5 resultados para Articulaçao do quadril
em Publishing Network for Geoscientific
Resumo:
Small biserial foraminifera were abundant in the early Miocene (ca. 18.9-17.2 Ma) in the eastern Atlantic and western Indian Oceans, but absent in the western equatorial Atlantic Ocean, Weddell Sea, eastern Indian Ocean, and equatorial Pacific Ocean. They have been assigned to the benthic genus Bolivina, but their high abundances in sediments without evidence for dysoxia could not be explained. Apertural morphology, accumulation rates, and isotopic composition show that they were planktic (genus Streptochilus). Living Streptochilus are common in productive waters with intermittent upwelling. The widespread early Miocene high Streptochilus abundances may reflect vigorous but intermittent upwelling, inducing high phytoplankton growth rates. However, export production (estimated from benthic foraminiferal accumulation rates) was low, possibly due to high regeneration rates in a deep thermocline. The upwelled waters may have been an analog to Subantarctic Mode Waters, carrying nutrients into the eastern Atlantic and western Indian Oceans as the result of the initiation of a deep-reaching Antarctic Circumpolar Current, active Agulhas Leakage, and vigorous vertical mixing in the Southern Oceans.
Resumo:
Upper Miocene foraminiferal nannofossil ooze and chalk from DSDP Hole 552A in the northeast Atlantic Ocean have been closely sampled for biostratigraphic, paleomagnetic, and stable-isotopic studies. Sampling at 10-cm intervals resulted in an uppermost Miocene isotope stratigraphy with a 1000- to 3000-yr. resolution. Covariance in benthic (Planulina wuellerstorfi) and planktonic (Globigerina bulloides) foraminiferal d18O records is taken as evidence for variability in continental ice volume. Our best estimate is that glacial maxima occurred at -5.0 and ~ 5.5 Ma and lasted no more than 20,000 yrs. These events probably lowered sea level by 60 m below the latest Miocene average. There is little oxygen-isotope evidence, however, for a prolonged glaciation during the last 2 m.y. of the late Miocene. High- and low-frequency variability in the d13C record of foraminifers is useful for correlation among North Atlantic DSDP Sites 408, 410, 522, 610, and 611, and for correlation with sites in other oceans. Similar d13C changes are seen in P. wuellerstorfi and G. bulloides, but the amplitude of the signal is always greater in G. bulloides. Variability in d13C common to both species probably reflects variability in the d13C of total CO2 in seawater. Major long-term features in the d13C record include a latest Miocene maximum (P. wuellerstorfi = 1.5 per mil ) in paleomagnetic Chron 7, an abrupt decrease in d13C at -6.2 Ma, and a slight increase at -5.5 Ma. The decrease in d13C at -6.2 Ma, which has been paleomagnetically dated only twice before, occurs in the upper reversed part of Chronozone 6 at Holes 552A and 611C, in excellent agreement with earlier studies. Cycles in d13C with a period of ~ 10 4 yrs. are interpreted as changes in seawater chemistry, which may have resulted from orbitally induced variability in continental biomass. Samples of P. wuellerstorfi younger than 6 Ma from throughout the North Atlantic have d13C near lo, on average ~ l per mil greater than samples of the same age in the Pacific Ocean. Thus, there is no evidence for cessation of North Atlantic Deep Water production resulting from the Messinian "salinity crisis." Biostratigraphic results indicate continuous sedimentation during the late Miocene after about -6.5 Ma at Hole 552A. Nannofossil biostratigraphy is complicated by the scarcity of low-latitude marker species, but middle and late Miocene Zones NN7 through NN11 are recognized. A hiatus is present at -6.5 Ma, on the basis of simultaneous first occurrences of Amaurolithusprimus, Amaurolithus delicatus, Amaurolithus amplificus, and Scyphosphaera globulata. The frequency and duration of older hiatuses increase downsection in Hole 552A, as suggested by calcareous nannofossil biostratigraphy and magnetostratigraphy. Paleomagnetic results at Hole 552A indicate a systematic pattern of inclination changes. Chronozone 6 was readily identified because of its characteristic nannoflora (sequential occurrences of species assigned to the genus Amaurolithus) and the d13C decrease in foraminifers, but its lower reversed interval is condensed. Only the lower normal interval of Chronozone 5 was recognized at Hole 552A; the upper normal interval and the lowest Gilbert sediment are not recognized, owing to low intensity of magnetization and to coring disturbance. Interpreting magnetic reversals below Chronozone 6 was difficult because of hiatuses, but a lower normally magnetized interval is probably Chronozone 7. Correlation between DSDP Hole 552A and other North Atlantic sites is demonstrated using coiling direction changes in the planktonic foraminifer Neogloboquadrina. At most sites this genus changed its coiling preference from dominantly right to dominantly left during the late Miocene. At Hole 552A this event probably occurred about 7 m.y. ago. At the same time, P. wuellerstorfi had maximum d13C values. A similar d13C maximum and coiling change occurred together in Chron 7 at Hole 611C, and at Hole 610E. In sediment younger than -5.5 Ma, the coiling of small Neogloboquadrina species is random, but the larger species N. atlantica retains preferential left coiling.
Resumo:
Changes in the vertical water mass structure of the Vema Channel during the Pliocene have been inferred from benthic foraminiferal assemblages and stable isotopic analyses from three sites of DSDP Leg 72 (South Atlantic). Faunal and isotopic results from Sites 516A and 518 suggest that a major change occurred in deep-water circulation patterns in the late Pliocene near 3.2 Ma. Benthic oxygen isotopic records from Sites 516A and 518 show a characteristic increase in d18O values near 3.2 Ma. This has been documented in numerous Pliocene isotopic records. The magnitude of the oxygen isotopic enrichment near 3.2 Ma appears to increase with water depth from an average enrichment of 0.34 per mil in Site 516A (1313 m) to an average enrichment of 0.58 per mil in Site 518 (3944 m). We suggest that this enrichment resulted partly from a change in deep-water circulation patterns which included a decrease in bottom-water temperatures. Planktonic d18O values near 3.2 Ma show no evidence of an enrichment which would be indicative of an increase in global ice volume. On the contrary, d18O values in Sites 517 and 518 become more depleted near 3.2 Ma, indicating a surface-water warming perhaps due to a change in the strength and/or position of the Brazil Current. An increase in the relative abundance of the benthic foraminifer Nuttalides umbonifera, which is associated with Antarctic Bottom Water (AABW) in the modern ocean, coincides with the benthic 18O enrichment in Site 518. At 3.2 Ma, oxygen and carbon isotopic gradients between Sites 518 (3944 m) and 516A (1313 m) show a marked increase such that Site 518 becomes enriched in 18O and depleted in 13C relative to Site 516A. This enrichment in d18O is interpreted as partly representing a temperature decrease at Site 518; the depletion in d13C indicates a corrosive water mass which is high in metabolic CO2. We suggest that benthic foraminiferal and stable isotopic changes in Site 518 resulted from a pulse-like increase in the formation of AABW near 3.2 Ma. The cause of this circulation event may have been linked to global cooling and/or the final closure of the Central American Seaway.
Resumo:
High-resolution oxygen and carbon isotope stratigraphy is presented for Miocene to early Pliocene sequences at three DSDP sites from the Lord Howe Rise, southwest Pacific, at water depths ranging from 1,300 to 2,000 m. Site 588 is located in the warm subtropics (~26°S), whereas Sites 590 and 591 are positioned in transitional (northern temperate) water masses (~31°S). Benthic foraminiferal oxygen and carbon isotope analyses were conducted on all sites; planktonic foraminiferal isotope data were generated for Site 590 only. Sample resolution in these sequences is on the order of 50,000 yr. or better. The chronological framework employed in this study is based largely upon ages assigned to Neogene calcareous nannoplankton boundaries. The benthic oxygen isotope record exhibits several major features during the Neogene. During most of the early Miocene, delta18O values were relatively low, reaching minimum values in the late early Miocene (19.5 to 16.5 Ma), and recording the climax of Neogene warmth. This was followed by a major increase in benthic delta18O values between ~16.5 and 13.5 Ma, which is interpreted as representing major, permanent accumulation of the East Antarctic ice sheet and cooling of bottom waters. During the 3 m.y. 18O enrichment, surface waters at these middle latitudes warmed between 16 and 14.5 Ma. During the remainder of the middle and late Miocene, benthic delta18O values exhibit distinct fluctuations, but the average value remained unchanged. The isotopic data show two distinct episodes of climatic cooling close to the middle/late Miocene boundary. The earliest of these events occurred between 12.5 and 11.5 Ma in the latest middle Miocene. The second cooling event occurred from 11 to 9 Ma, and is marked by some of the highest delta18O values of the entire Miocene. This was followed by relative warmth during the middle part of the late Miocene. The latest Miocene and earliest Pliocene (6.2 to 4.5 Ma) were marked by relatively high delta18O values, indicating increased cooling and glaciation. During the middle Pliocene, at about 3.4 Ma, a 0.4 per mil increase in benthic delta18O documents a net increase in average global ice volume and cooling of bottom waters. During this interval of increased glaciation, surface waters warmed by 2-3°C in southern middle-latitude regions. During the late Pliocene, between 2.6 and 2.4 Ma, a further increase in delta18O occurred; this has been interpreted by previous workers as heralding the onset of Northern Hemisphere glaciation. Surface-water warming in the middle latitudes occurred in association with major high-latitude glacial increases in the early middle Miocene (16-14 Ma), middle Pliocene (-3.5 Ma), and late Pliocene (~2.4 Ma). These intervals were also marked by increases in the vertical temperature gradient in the open ocean. Intersite correlation is enhanced by using carbon isotope stratigraphy. The great similarity of the delta13C time-series records within and between ocean basins and with water depth clearly indicates that changes in oceanwide average delta13C of [HCO3]- in seawater dominated the records, rather than local effects. Broad changes in the Neogene delta13C record were caused largely by transfer of organic carbon between continental and oceanic reservoirs. These transfers were caused by marine transgressions and regressions on the continental margins. The dominant feature of Neogene delta13C stratigraphy is a broad late early to early middle Miocene increase of about lâ between ~19 and 14.5 Ma. This trend occurred contemporaneously with a period of maximum coastal onlap (transgression) and maximum Neogene climatic warmth. The delta13C trend terminated during the expansion of the Antarctic ice sheet and associated marine regression. The latest Miocene carbon isotope shift (of up to - 0.75 per mil) at 6.2 Ma is clearly recorded in all sites examined and was followed by relatively low values during the remainder of the Neogene. This shift was caused by a glacioeustatic sealevel lowering that exposed continental margins via regression and ultimately increased the flux of organic carbon to the deep sea. An increase in delta13C values during the early Pliocene (~5 to 4 Ma) resulted from marine transgression during a time of global warmth.
Resumo:
The stratigraphy and paleoceanography of the late Miocene and early Pliocene have been examined at six sites in the South Atlantic and southwest Pacific oceans: Deep Sea Drilling Project (DSDP) sites 284, 516A, 519, 588, and 590 and two piston cores from Chain cruise 115. A consistent stratigraphy was developed among sites using graphic correlation, which resulted in age models for all sites that are tied to the revised paleomagnetic time scale of Berggren et al. (1985). Applying these chronologies, we assessed latitudinal and interocean contrasts in the stratigraphic ranges of late Miocene-early Pliocene planktonic foraminiferal and nanno - fossil datums. Salient stratigraphic results include (1) The last appearance datum (LAD) of Globoquadrina dehiscens is a late Miocene (approx. 6.4 Ma) event in the subtropics and is not useful for the placement of the Miocene/Pliocene (M/P) boundary in this biogeographic province. (2) The first appearance datum (FAD) of Globorotalia crassaformis occurred at 5.1 Ma in the South Atlantic near the M/P boundary, suggesting that Gr. crassaformis may have first evolved in the South Atlantic and later migrated to other regions. (3) In the southwest Pacific, the FADs of Gr. margaritae (5.97 Ma), Gr. puncticulata (5.09 Ma), and Gr. crassaformis (4.87 Ma) are significantly time transgressive between temperate and warm subtropical regions. Time lags of 1.0 m.y. were required for these species to adapt to physical and/or biotic conditions peripheral to their endemic biogeographic provinces. (4) Between the subtropics of the South Atlantic and southwest Pacific, many planktonic foraminiferal datums (FAD of Dentogloboquadrina altispira, Gr. cibaoensis, Gr. conomiozea, Gr. margaritae, and Gq. dehiscens and LAD of Gr. cibaoensis) markedly depart from the correlation suggested by magnetostratigraphy, indicating that these datum levels are unreliable for correlation between these ocean basins. (5) In contrast, available calcareous nannofossil datum levels fall on or near the paleomagnetic correlation line, indicating synchroneity of events within the subtropics. (6) Biostratigraphic, magnetic, and 87Sr/86Sr correlation between sites 588 and 519 and the M/P neostratotype at Capo Rossello, Sicily, suggests that the base of the Zanclean stratotype occurs at 5.1-5.0 Ma in the lower reversed subchron of the Gilbert, about 2-3 * 10**5 years above the Gilbert/Chron 5 boundary. Oxygen isotopic results from DSDP sites 284, 519, and CH115 piston cores confirm a prolonged benthic d18O increase in the latest Miocene between 5.6 and 5.0 Ma, as originally proposed by Shackleton and Kennett (1975). At DSDP site 588, the benthic d18O record in the latest Miocene is marked by high-frequency fluctuations with amplitude variations of 0.5per mill, and a long-period wavelength component of 400,000 years. Maximum d18O values, however, occurred during the late Miocene (Kapitean Stage) between 5.5 and 5.1 Ma. The late Miocene d18O changes resulted from mid- and high-latitude cooling and pulses of ice sheet expansion and contraction. Glacial events were most intense during the latest Miocene (Kapitean Stage), and occurred at 5.50-5.35 Ma and at 5.10 Ma. Glacial events are estimated to have lowered sea level by 40 to 60 m and contributed to the isolation and desiccation of the Mediterranean Basin during the late Messinian. Interglacial conditions prevailed at 5.2 Ma and between 5.0 and 4.1 Ma in the early Pliocene. The beginning of the Pliocene was marked by changes in many proxy climatic indicators at all sites, suggesting a prolonged interval of warm, interglacial conditions between 5.0 and 4.1 Ma during the earliest Pliocene.