57 resultados para Art 29 N° 4 Código de Comercio

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The southern Caribbean basins are thought to be part of a relatively old and geologically stable crustal plate. Although surrounded by belts of high earthquake activity, the central Caribbean is seismically quiet. The region also constitutes a quiet magnetic zone and appears to have resisted all of the surrounding forces related to ocean floor spreading. In addition to providing considerable information on the general geologic history of the Caribbean region, paleontologic studies on cores at Site 29 were expected to provide valuable data on phylogenetic trends within the planktonic foraminifera and calcareous nannoplankton, furnishing more accurate criteria for intercontinental stratigraphic correlation. The work reported here is a biostratigraphic summary of available samples. only the most important and biostratigraphically significant components of the faunas have been noted. No attempt has been made to give an exhaustive faunal analysis of the samples seen.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geoelectrical soundings were carried out in 29 different places in order to find permafrost and to measure its thickness. In most places above timber Iine a permafrost thickness of 10-50 m was recorded. Permafrost was found at sites with thin snow cover during winter. Here, deflation phenomena on the summits of fjells indicate the occurence of permafrost, Vegetation type might be a good indicator of permafrost, too. It seems obvious that permafrost exists extensively on fjell summits of northern Finland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Twenty ice cores drilled in medium to high accumulation areas of the Greenland ice sheet have been used to extract seasonally resolved stable isotope records. Relationships between the seasonal stable isotope data and Greenland and Icelandic temperatures as well as atmospheric flow are investigated for the past 150-200 years. The winter season stable isotope data are found to be influenced by the North Atlantic Oscillation (NAO) and very closely related to SW Greenland temperatures. The linear correlation between the first principal component of the winter season stable isotope data and Greenland winter temperatures is 0.71 for seasonally resolved data and 0.83 for decadally filtered data. The summer season stable isotope data display higher correlations with Stykkisholmur summer temperatures and North Atlantic SST conditions than with SW Greenland temperatures. The linear correlation between Stykkisholmur summer temperatures and the first principal component of the summer season stable isotope data is 0.56, increasing to 0.66 for decadally filtered data. Winter season stable isotope data from ice core records that reach more than 1400 years back in time suggest that the warm period that began in the 1920s raised southern Greenland temperatures to the same level as those that prevailed during the warmest intervals of the Medieval Warm Period some 900-1300 years ago. This observation is supported by a southern Greenland ice core borehole temperature inversion. As Greenland borehole temperature inversions are found to correspond better with winter stable isotope data than with summer or annual average stable isotope data it is suggested that a strong local Greenland temperature signal can be extracted from the winter stable isotope data even on centennial to millennial time scales.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deposits corresponding to multiple periods of glaciation are preserved in ice-free areas adjacent to Reedy Glacier, southern Transantarctic Mountains. Glacial geologic mapping, supported by 10Be surface-exposure dating, shows that Reedy Glacier was significantly thicker than today multiple times during the mid-to-late Cenozoic. Longitudinal-surface profiles reconstructed from the upper limits of deposits indicate greater thickening at the glacier mouth than at the head during these episodes, indicating that Reedy Glacier responded primarily to changes in the thickness of the West Antarctic Ice Sheet. Surface-exposure ages suggest this relationship has been in place since at least 5 Ma. The last period of thickening of Reedy Glacier occurred during Marine Isotope Stage 2, at which time the glacier surface near its confluence with the West Antarctic Ice Sheet was at least 500 m higher than today.