53 resultados para Arizona Game and Fish Department
em Publishing Network for Geoscientific
Resumo:
Recovery from the end-Permian mass extinction is frequently described as delayed, with complex ecological communities typically not found in the fossil record until the Middle Triassic epoch. However, the taxonomic diversity of a number of marine groups, ranging from ammonoids to benthic foraminifera, peaked rapidly in the Early Triassic. These variations in biodiversity occur amidst pronounced excursions in the carbon isotope record, which are compatible with episodes of massive CO2 outgassing from the Siberian Large Igneous Province. Here we present a high-resolution Early Triassic temperature record based on the oxygen isotope composition of pristine apatite from fossil conodonts. Our reconstruction shows that the beginning of the Smithian substage of the Early Triassic was marked by a cooler climate, followed by an interval of warmth lasting until the Spathian substage boundary. Cooler conditions resumed in the Spathian. We find the greatest increases in taxonomic diversity during the cooler phases of the early Smithian and early Spathian. In contrast, a period of extreme warmth in the middle and late Smithian was associated with floral ecological change and high faunal taxonomic turnover in the ocean. We suggest that climate upheaval and carbon-cycle perturbations due to volcanic outgassing were important drivers of Early Triassic biotic recovery.
Resumo:
In the coming decades, artificial defence structures will increase in importance worldwide for the protection of coasts against the impacts of global warming. However, the ecological effects of such structures on the natural surroundings remain unclear. We investigated the impact of experimentally introduced tetrapod fields on the demersal fish community in a hard-bottom area in the southern North Sea. The results indicated a significant decrease in fish abundance in the surrounding area caused by migration effects towards the artificial structures. Diversity (HB) and evenness (E) values exhibited greater variation after the introduction of the tetrapods. Additionally, a distinct increase in young-of-the-year (YOY) fish was observed near the structures within the second year after introduction. We suggest that the availability of adequate refuges in combination with additional food resources provided by the artificial structures has a highly species-specific attraction effect. However, these findings also demonstrate that our knowledge regarding the impact of artificial structures on temperate fish communities is still too limited to truly understand the ecological processes that are initiated by the introduction of artificial structures. Long-term investigations and additional experimental in situ work worldwide will be indispensable for a full understanding of the mechanisms by which coastal defence structures interact with the coastal environment.