10 resultados para Apex predator
em Publishing Network for Geoscientific
Resumo:
Characterization of the diets of upper-trophic predators is a key ingredient in management including the development of ecosystem-based fishery management plans, conservation efforts for top predators, and ecological and economic modeling of predator prey interactions. The California Current Predator Diet Database (CCPDD) synthesizes data from published records of predator food habits over the past century. The database includes diet information for 100+ upper-trophic level predator species, based on over 200 published citations from the California Current region of the Pacific Ocean, ranging from Baja, Mexico to Vancouver Island, Canada. We include diet data for all predators that consume forage species: seabirds, cetaceans, pinnipeds, bony and cartilaginous fishes, and a predatory invertebrate; data represent seven discrete geographic regions within the CCS (Canada, WA, OR, CA-n, CA-c, CA-s, Mexico). The database is organized around predator-prey links that represent an occurrence of a predator eating a prey or group of prey items. Here we present synthesized data for the occurrence of 32 forage species (see Table 2 in the affiliated paper) in the diet of pelagic predators (currently submitted to Ecological Informatics). Future versions of the shared-data will include diet information for all prey items consumed, not just the forage species of interest.
Resumo:
Little is known about the impact of ocean acidification on predator-prey dynamics. Herein, we examined the effect of carbon dioxide (CO(2)) on both prey and predator by letting one predatory reef fish interact for 24 h with eight small or large juvenile damselfishes from four congeneric species. Both prey and predator were exposed to control or elevated levels of CO(2). Mortality rate and predator selectivity were compared across CO(2) treatments, prey size and species. Small juveniles of all species sustained greater mortality at high CO(2) levels, while large recruits were not affected. For large prey, the pattern of prey selectivity by predators was reversed under elevated CO(2). Our results demonstrate both quantitative and qualitative consumptive effects of CO(2) on small and larger damselfish recruits respectively, resulting from CO(2)-induced behavioural changes likely mediated by impaired neurological function. This study highlights the complexity of predicting the effects of climate change on coral reef ecosystems.
Resumo:
Rising levels of atmospheric CO2 are responsible for a change in the carbonate chemistry of seawater with associated pH drops (acidification) projected to reach 0.4 units from 1950 to 2100. We investigated possible indirect effects of seawater acidification on the feeding, fecundity, and hatching success of the calanoid copepod Acartia grani, mediated by potential CO2-induced changes in the nutritional characteristics of their prey. We used as prey the autotrophic dinoflagellate Heterocapsa sp., cultured at three distinct pH levels (control: 8.17, medium: 7.96, and low: 7.75) by bubbling pure CO2 via a computer automated system. Acartia grani adults collected from a laboratory culture were acclimatized for 3 d at food suspensions of Heterocapsa from each pH treatment (ca. 500 cells/ml; 300 ?g C/l). Feeding and egg production rates of the preconditioned females did not differ significantly among the three Heterocapsa diets. Egg hatching success, monitored once per day for the 72 h, did not reveal significant difference among treatments. These results are in agreement with the lack of difference in the cellular stoichiometry (C : N, C : P, and N : P ratios) and fatty acid concentration and composition encountered between the three tested Heterocapsa treatments. Our findings disagree with those of other studies using distinct types of prey, suggesting that this kind of indirect influence of acidification on copepods may be largely associated with interspecific differences among prey items with regard to their sensitivity to elevated CO2 levels.
Resumo:
Most studies on the impact of near-future levels of carbon dioxide on fish behaviour report behavioural alterations, wherefore abnormal behaviour has been suggested to be a potential consequence of future ocean acidification and therefore a threat to ocean ecosystems. However, an increasing number of studies show tolerance of fish to increased levels of carbon dioxide. This variation among studies in susceptibility highlights the importance of continued investigation of the possible effects of elevated pCO2. Here, we investigated the impacts of increased levels of carbon dioxide on behaviour using the goldsinny wrasse (Ctenolabrus rupestris), which is a common species in European coastal waters and widely used as cleaner fish to control sea lice infestation in commercial fish farming in Europe. The wrasses were exposed to control water conditions (370 µatm) or elevated pCO2 (995 µatm) for 1 month, during which time behavioural trials were performed. We investigated the possible effects of CO2 on behavioural lateralization, swimming activity, and prey and predator olfactory preferences, all behaviours where disturbances have previously been reported in other fish species after exposure to elevated CO2. Interestingly, we failed to detect effects of carbon dioxide for most behaviours investigated, excluding predator olfactory cue avoidance, where control fish initially avoided predator cue while the high CO2 group was indifferent. The present study therefore shows behavioural tolerance to increased levels of carbon dioxide in the goldsinny wrasse. We also highlight that individual fish can show disturbance in specific behaviours while being apparently unaffected by elevated pCO2 in other behavioural tests. However, using experiments with exposure times measured in weeks to predict possible effects of long-term drivers, such as ocean acidification, has limitations, and the behavioural effects from elevated pCO2 in this experiment cannot be viewed as proof that these fish would show the same reaction after decades of evolution.
Resumo:
Ocean acidification is the suite of chemical changes to the carbonate system of seawater as a consequence of anthropogenic carbon dioxide (CO2) emissions. Despite a growing body of evidences demonstrating the negative effects of ocean acidification on marine species, the consequences at the ecosystem level are still unclear. One factor limiting our ability to upscale from species to ecosystem is the poor mechanistic understanding of the functional consequences of the observed effects on organisms. This is particularly true in the context of species interactions. The aim of this work was to investigate the functional consequence of the exposure of a prey (the mussel Brachidontes pharaonis) to ocean acidification for both the prey and its predator (the crab Eriphia verrucosa). Mussels exposed to pH 7.5 for >4 weeks showed significant decreases in condition index and in mechanical properties (65% decrease in maximum breaking load) as compared with mussels acclimated to pH 8.0. This translated into negative consequences for the mussel in presence of the predator crab. The crab feeding efficiency increased through a significant 27% decrease in prey handling time when offered mussels acclimated to the lowest pH. The predator was also negatively impacted by the acclimation of the prey, probably as a consequence of a decreased food quality. When fed with prey acclimated under decreased pH for 3 months, crab assimilation efficiency significantly decreased by 30% and its growth rate was 5 times slower as compared with crab fed with mussels acclimated under high pH. Our results highlight the important to consider physiological endpoints in the context of species interactions.
Resumo:
Understanding the impact of ocean acidification and warming on communities and ecosystems is a researcher priority. This can only be achieved through a combination of experimental and field approaches that would allow developing a mechanistic understanding of impacts across level of biological organizations. Surprisingly, most published studies are still focusing on single species responses with little consideration for interspecific interactions. In this study, the impacts of a 3 days exposure to three parameters (temperature, pH, and presence/absence of the predator cue of the crab Charybdis japonica) and their interactions on an ecologically important endpoint were evaluated: the byssus production of the mussel Mytilus coruscus. Tested temperatures (25°C and 30°C) were within the present range of natural variability whereas pH (8.1, 7.7, and 7.4) covered present as well as near-future natural variability. As expected, the presence of the crab cue induced an antipredator response in Mytilus coruscus (significant 10% increase in byssus secretion rate, 22% increase in frequency of shed byssus, and 30% longer byssus). Decreased pH but not temperature had a significant negative impact on the same endpoints (up to a 17% decrease in byssus secretion rate, 40% decrease in frequency of shed byssus, and 10% shorter byssus at pH 7.3 as compared with pH 8.1) with no significant interactions between the three tested parameters. In this study, it has been hypothesized that pH and predator cue have different modes of action and lead to conflicting functional responses (escape response versus stronger attachment). Functional consequences for ecosystem dynamics still need to be investigated.
Resumo:
Ocean warming and acidification are serious threats to marine life. While each stressor alone has been studied in detail, their combined effects on the outcome of ecological interactions are poorly understood. We measured predation rates and predator selectivity of two closely related species of damselfish exposed to a predatory dottyback. We found temperature and CO2 interacted synergistically on overall predation rate, but antagonistically on predator selectivity. Notably, elevated CO2 or temperature alone reversed predator selectivity, but the interaction between the two stressors cancelled selectivity. Routine metabolic rates of the two prey showed strong species differences in tolerance to CO2 and not temperature, but these differences did not correlate with recorded mortality. This highlights the difficulty of linking species-level physiological tolerance to resulting ecological outcomes. This study is the first to document both synergistic and antagonistic effects of elevated CO2 and temperature on a crucial ecological process like predator-prey dynamics.
Resumo:
Recent research has shown that exposure to elevated carbon dioxide (CO2) affects how fishes perceive their environment, affecting behavioral and cognitive processes leading to increased prey mortality. However, it is unclear if increased mortality results from changes in the dynamics of predator-prey interactions or due to prey increasing activity levels. Here we demonstrate that ocean pCO2 projected to occur by 2100 significantly effects the interactions of a predator-prey pair of common reef fish: the planktivorous damselfish Pomacentrus amboinensis and the piscivorous dottyback Pseudochromis fuscus. Prey exposed to elevated CO2 (880 µatm) or a present-day control (440 µatm) interacted with similarly exposed predators in a cross-factored design. Predators had the lowest capture success when exposed to elevated CO2 and interacting with prey exposed to present-day CO2. Prey exposed to elevated CO2 had reduced escape distances and longer reaction distances compared to prey exposed to present-day CO2 conditions, but this was dependent on whether the prey was paired with a CO2 exposed predator or not. This suggests that the dynamics of predator-prey interactions under future CO2 environments will depend on the extent to which the interacting species are affected and can adapt to the adverse effects of elevated CO2.
Resumo:
We investigated the nonconsumptive effects (NCEs) of predatory dogwhelks (Nucella lapillus) on intertidal barnacle (Semibalanus balanoides) recruitment through field experiments on the Gulf of St. Lawrence coast and the Atlantic coast of Nova Scotia, Canada. We studied the recruitment seasons (May-June) of 2011 and 2013. In 2011, the Gulf coast had five times more nearshore phytoplankton (food for barnacle larvae and recruits) during the recruitment season and yielded a 58% higher barnacle recruit density than the Atlantic coast at the end of the recruitment season. In 2013, phytoplankton levels and barnacle recruit density were similar on both coasts and also lower than for the Gulf coast in 2011. Using the comparative-experimental method, the manipulation of dogwhelk presence (without allowing physical contact with prey) revealed that dogwhelk cues limited barnacle recruitment under moderate recruit densities (Atlantic 2011/2013 and Gulf 2013) but had no effect under a high recruit density (Gulf 2011). Barnacle recruits attract settling larvae through chemical cues. Thus, the highest recruit density appears to have neutralized dogwhelk effects. This study suggests that the predation risk perceived by settling larvae may decrease with increasing recruit density and that prey food supply may indirectly influence predator NCEs on prey recruitment.