11 resultados para Antofagasta and Bolivian Railway Co.

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present dataset contains the source data for Figure 2B of Tentner et al. (2012). The data shows the percentage of cultured cell-populations that stained positively and/or negatively for apoptotic markers cleaved caspase-3 and cleaved PARP, following DNA damage treatments induced by various doses of doxorubicin (0, 2 and 10 µmole/L) in the presence (100 ng/mL) or absence (0 ng/mL) of TNF-alpha co-treatment. For the six treatment conditions investigated, cell counts were made by flow cytometry at times 6, 12, 24, and 48 h following treatment; CULTURE DETAILS: U2OS cells were obtained from ATCC were maintained at 21% oxygen and 5% CO2 in Dulbecco's modified Eagle medium supplemented with 10% fetal bovine serum, penicillin, streptomycin, 2mM L-glutamine, and used within 15-20 passages. The first thymidine block was released by washing the plates three times with PBS, and incubating them in fresh thymidine-free media for 12 h. A second thymidine block was then performed by re-addition of thymidine to 2.5 mM followed by incubation for an additional 18 h. Media was aspirated, plates were washed 3 with PBS, and replaced with fresh media in the presence or absence of 10 mM aphidicolin; ANALYSIS DETAILS: See supplementary journal publication; RESULT: The authors of the supplementary journal publication conclude that TNF enhances dose-dependent cell death following doxorubicin-induced DNA damage with minimal affect on dose-dependent cell-cycle arrest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conductivity of 54 basalt samples from ODP Sites 768 and 770 was measured as a function of temperature and fluid salinity. Porosity was also measured for all samples, and cation exchange capacity was measured for 46 of the samples. Porosity measurements indicated that porosity is underestimated for basalts like these, unless one uses extensive drying at high vacuum. At salinities greater than 29 ppt, and throughout the range of salinity and temperatures likely in situ, sample conductivity (Co) is controlled by porosity (phi) according to the Archie relation Co = 0.22*Cw phi*1-3 (orFF = 4.5/f1.3), where Cw is conductivity of the pore fluids and FF = Cw/CO is the formation factor. At lower salinity, clay-surface conduction or microcrack conduction may dominate. We are unable to distinguish reliably between the two mechanisms, but we do detect their effects subtly at high salinity and strongly at low salinity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conservation of birds and their habitats is essential to maintain well-functioning ecosystems including human-dominated habitats. In simplified or homogenized landscapes, patches of natural and semi-natural habitat are essential for the survival of plant and animal populations. We compared species composition and diversity of trees and birds between gallery forests, tree islands and hedges in a Colombian savanna landscape to assess how fragmented woody plant communities affect forest bird communities and how differences in habitat characteristics influenced bird species traits and their potential ecosystem function. Bird and tree diversity was higher in forests than in tree islands and hedges. Soil depth influenced woody species distribution, and canopy cover and tree height determined bird species distribution, resulting in plant and bird communities that mainly differed between forest and non-forest habitat. Bird and tree species and traits widely co-varied. Bird species in tree islands and hedges were on average smaller, less specialized to habitat and more tolerant to disturbance than in forest, but dietary differences did not emerge. Despite being less complex and diverse than forests, hedges and tree islands significantly contribute to the conservation of forest biodiversity in the savanna matrix. Forest fragments remain essential for the conservation of forest specialists, but hedges and tree islands facilitate spillover of more tolerant forest birds and their ecological functions such as seed dispersal from forest to the savanna matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Primary sulfides from cores of ODP Holes 158-957M, 158-957C, and 158-957H on the active TAG hydrothermal mound (Mid-Atlantic Ridge, 26°08'N) have been studied for concentrations of several chemical elements. Based on 262 microprobe analyses it has been found that the sulfides have extremely heterogeneous distribution of noble metals (Au, Ag, Pt, and Pd) and several associated elements (Hg, Co, and Se). Noble metals are arranged in the following order in terms of decreasing abundance, i.e. concentration level above detection limits (the number of analyses containing a specific element is given in parentheses): Au (65), Ag (46), Pt (21), and Pd (traces). The associated trace elements have the following series: Co (202), Hg (132), and Se (49). The main carriers of "invisible" portion of the noble metals are represented by pyrite (Au, Hg), marcasite and pyrite (Ag, Co), sphalerite and chalcopyrite (Pt, Pd), and chalcopyrite (Se). Noble metal distribution in sulfides reveals a lateral zonality: maximal concentrations and abundance of Au in chalcopyrite (or Pt and Ag in chalcopyrite and pyrite) increase from the periphery (Hole 957H) to the center (holes 957C and 957M) of the hydrothermal mound, while Au distribution in pyrite displays a reversed pattern. Co concentration increases with depth. Vertical zonality in distribution of the elements mentioned above and their response to evolution of ore genesis are under discussion in the paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface sediments from 5 profiles between 30 and 3000 m water depth off W Africa (12-19° N) have been studied for their sand fraction composition and their total calcium carbonate and organic matter contents to evaluate the effect of climatic and hydrographic factors on actual sedimentation. On the shelf and upper slope (< 500 m), currents prevent the deposition of significant amounts of fine-grained material. The sediments forming here are characterized by high sand contents (> 60 %; in most samples > 89 %), low organic carbon contents (in most samples < 0.8 %), high median diameters of the sand fraction (120-500 µm), and by a predominance of quartz and biogenic relict shells (most abundant: molluscs and bryozoans) in the sand fraction. Median diameters of total sand fraction and of major biogenic sand fraction components (biogenic relict material, benthonic molluscs, benthonic and planktonic foraminifers) co-vary to some extent and show maximum values in 100-300 m water depth, reflectingthe sorting effect of currents (perhaps the northward flowing undercurrent). In this water depth, biogenic relict material is considerably enriched relative to wuartz, the second dominating sand fraction component on the shelf and upper slope, resulting in distinct calcium carbonate maxima of the bulk sediments. The influence of the undercurrent is also reflected in a northward transport of fine grained river load and perhaps in the distribution of the red stained, coarse silt and sand-size clay aggregates, which show maxima in 300-500 m water depth. They probably originate from tropical soils. Abundant coarse red-stained quartz on the shelf off Cape Roxo (12-130° N) suggests a southward extension of last glacial dune fields to this latitude. Below about 500 m water depth, current influence becomes negligible - as indicated by a strong decrease in sand content, a concomitant increase in sedimentary organic carbon contents (up to 2.5-3.5 %), and the occurence of high mica/quartz ratios in the sand fraction. Downslope transport, presumably due to the bioturbation mechanism, is indicated by the presence of coarse shelf-borne particles (glauconite, relict shells) down to about 1000 m water depth. The fine/coarse ratio (clay + silt/sand) of the sediments from water deoth > 500 m never exceed a value of 11 in northern latitudes (19° - 26° N), but shows distinct maxima, ranging from 50 to 120, at latitudes 18°, 17° 15°30', and 14° N in about 2000 m water depth. This distribution is attributed to the deposition of fine-grained river load at the continental slope between 18° and 14° N, brought into the sea by the Senegal and souther rivers and transported northward ny the undercurrent. Strong calcium carbonate dissolution is indicated by the complete disappearance of pteropodes (aragonite) and high fragmentation of the planktoic foraminifers (calcite) in sediments from water depth > 300-600 m. Fragmentation ratios of planktonic foraminifers were found to depend on the organic carbon/carbonate ratios of the sediment suggesting that calcite dissolution at the sea bottom may also be significant in shelf and continental slope water depths if the organic matter/carbonate ratio of the surface sediment is high and the test remain long enough within the oxidizing layer on the top of the sulfate reduction zone. The fact that in the region under study intensity and anual duration of upwelling decrease from north to south is neither reflected in the composition on the sand fraction (i.e. radiolarian and fish debris contents, radiolarian/planktonic foraminiferal ratios, benthos/plankton ratios of foraminifers), nor in the sedimentary organic carbon distribution. On the contrary, these parameters even show in comparable water depths a tendency for highest values in the south, partly because primary production rates remain high in the whole region, particularly on the shelf, due to the nutrient input by rivers in the south. In addition, several hydrographic, sedimentological and climatic factors severely affect their distribution - for example currents, dissolution, grain size composition, deposition of river load, and bulk sedimentation rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most calcifying organisms show depressed metabolic, growth and calcification rates as symptoms to high-CO(2) due to ocean acidification (OA) process. Analysis of the global expression pattern of proteins (proteome analysis) represents a powerful tool to examine these physiological symptoms at molecular level, but its applications are inadequate. To address this knowledge gap, 2-DE coupled with mass spectrophotometer was used to compare the global protein expression pattern of oyster larvae exposed to ambient and to high-CO(2). Exposure to OA resulted in marked reduction of global protein expression with a decrease or loss of 71 proteins (18% of the expressed proteins in control), indicating a wide-spread depression of metabolic genes expression in larvae reared under OA. This is, to our knowledge, the first proteome analysis that provides insights into the link between physiological suppression and protein down-regulation under OA in oyster larvae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gas hydrate samples from various locations in the Gulf of Mexico (GOM) differ considerably in their microstructure. Distinct microstructure characteristics coincide with discrete crystallographic structures, gas compositions and calculated thermodynamic stabilities. The crystallographic structures were established by X-ray diffraction, using both conventional X-ray sources and high-energy synchrotron radiation. The microstructures were examined by cryo-stage Field-Emission Scanning Electron Microscopy (FE-SEM). Good sample preservation was warranted by the low ice fractions shown from quantitative phase analyses. Gas hydrate structure II samples from the Green Canyon in the northern GOM had methane concentrations of 70-80% and up to 30% of C2-C5 of measured hydrocarbons. Hydrocarbons in the crystallographic structure I hydrate from the Chapopote asphalt volcano in the southern GOM was comprised of more than 98% methane. Fairly different microstructures were identified for those different hydrates: Pores measuring 200-400 nm in diameter were present in structure I gas hydrate samples; no such pores but dense crystal surfaces instead were discovered in structure II gas hydrate. The stability of the hydrate samples is discussed regarding gas composition, crystallographic structure and microstructure. Electron microscopic observations showed evidence of gas hydrate and liquid oil co-occurrence on a micrometer scale. That demonstrates that oil has direct contact to gas hydrates when it diffuses through a hydrate matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The combined effects of different light and aqueous CO2 conditions were assessed for the Southern Ocean diatom Proboscia alata(Brightwell) Sundström in laboratory experiments. Selected culture conditions (light and CO2(aq)) were representative for the natural ranges in the modern Southern Ocean. Light conditions were 40 (low) and 240 (high) µmol photons/m**2/s. The three CO2(aq) conditions ranged from 8 to 34 µmol/kg CO2(aq) (equivalent to a pCO2 from 137 to 598 µatm, respectively). Clear morphological changes were induced by these different CO2(aq) conditions. Cells in low [CO2(aq)] formed spirals, while many cells in high [CO2(aq)] disintegrated. Cell size and volume were significantly affected by the different CO2(aq) concentrations. Increasing CO2(aq) concentrations led to an increase in particulate organic carbon concentrations per cell in the high light cultures, with exactly the opposite happening in the low light cultures. However, other parameters measured were not influenced by the range of CO2(aq) treatments. This included growth rates, chlorophyll aconcentration and photosynthetic yield (FV/FM). Different light treatments had a large effect on nutrient uptake. High light conditions caused an increased nutrient uptake rate compared to cells grown in low light conditions. Light and CO2 conditions co-determined in various ways the response of P. alata to changing environmental conditions. Overall P. alata appeared to be well adapted to the natural variability in light availability and CO2(aq) concentration of the modern Southern Ocean. Nevertheless, our results showed that P. alata is susceptible to future changes in inorganic carbon concentrations in the Southern Ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here, the pelagic carbonate system and the ?13C signature of dissolved inorganic carbonate (DIC) were investigated in a tidal basin of the southern North Sea, the Jade Bay, with respect to tidal cycles and a transect towards the North Sea in winter time (January and November, 2010). Physical parameters, major and trace elements, and nutrient concentrations were considered, too. Primary production and pelagic organic matter respiration were negligible during winter time. Both, the compositional variations on the transects as well as during the tidal cycles indicate the mixing of North Sea with fresh water. The combined spatial co-variations of different parameters indicate an introduction of fresh water that was enriched in DI12C, metabolites (e.g., ammonia), protons, and dissolved redox-sensitive elements (e.g., Mn2+). During the January campaign, the discharge via the flood gates was limited due to ice cover of the hinterland drainage ditches, allowing for an observation of tidal variations without significant mixing contributions from surface water discharges. Considering a binary mixing model with North Sea and fresh water as end-members, the extrapolated fresh water end-member composition for this campaign is estimated to contain about 3.8 mmol/kg DIC , and enhanced concentrations of NH4+, Mn2+, and protons compared to North Sea water. The fast temporal response of dissolved geochemical tracers on tidal variations in the Jade Bay indicates a continuous supply of a fresh water component. The measured composition of fresh waters entering the Jade Bay via flood gates (end of October, 2010) did not match the values estimated by the binary mixing model. Therefore, the overall fresh water component likely is a mixture between sources originating from flood gates and (in January) dominating submarine groundwater discharge entering the Jade Bay. This model is consistent with the results obtained during the November campaign, when a more important contribution from flood gates is expected and a more variable fresh water end-member is estimated. The co-variations of the concentrations and the stable carbon isotope composition of DIC are applied to evaluate possible superimposed sink-source-transformation processes in the coastal waters and a general co-variation scheme is suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To understand the role of the ocean within the global carbon cycle, detailed information is required on key-processes within the marine carbon cycle; bio-production in the upper ocean, export of the produced material to the deep ocean and the storage of carbon in oceanic sediments. Quantification of these processes requires the separation of signals of net primary production and the rate of organic matter decay as reflected in fossil sediments. This study examines the large differences in degradation rates of organic-walled dinoflagellate cyst species to separate these degradation and productivity signals. For this, accumulation rates of cyst species known to be resistant (R-cysts) or sensitive (S-cysts) to aerobic degradation of 62 sites are compared to mean annual chlorophyll-a, sea-surface temperature, sea-surface salinity, nitrate and phosphate concentrations of the upper waters and deep-water oxygen concentrations. Furthermore, the degradation of sensitive cysts, as expressed by the degradation constant k and reaction time t, has been related to bottom water [O2]. The studied sediments were taken from the Arabian Sea, north-western African Margin (North Atlantic), western-equatorial Atlantic Ocean/Caraibic, south-western African margin (South Atlantic) and Southern Ocean (Atlantic sector). Significant relationships are observed between (a) accumulation rates of R-cysts and upper water chlorophyll-a concentrations, (b) accumulation rates of S-cysts and bottom water [O2] and (c) degradation rates of S-cysts (kt) and bottom water [O2]. Relationships that are extremely weak or are clearly insignificant on all confidence intervals are between (1) S-cyst accumulation rates and chlorophyll-a concentrations, sea-surface temperature (SST), sea-surface salinity (SSS), phosphate concentrations (P) and nitrate concentrations (N), (2) between R-cyst accumulation rates and bottom water [O2], SST, SSS, P and N, and between (3) kt and water depth. Co-variance is present between the parameters N and P, N, P and chlorophyll-a, oxygen and water depth. Correcting for this co-variance does not influence the significance of the relationship given above. The possible applicability of dinoflagellate cyst degradation to estimate past net primary production and deep ocean ventilation is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable d13C and d15N isotopes, diet and parasites demonstrated that the prey consumed by ninespine stickleback Pungitius pungitius in a small lake on Baffin Island changed during the summer and also revealed intraspecific variation in their ecological niche. In July, there were differences in the diets of male and female ninespine stickleback as indicated by the stable isotopes, differences corroborated by the data on diet composition and the parasite fauna. Differences suggested that the sexes occupied different habitats during spawning. During July, females utilise the shallower littoral areas consuming zooplankton and benthic organisms, while males occupy deeper areas of the littoral zone feeding mainly on pelagic zooplankton. Parasite data support these observations as males had higher infections of copepod-transmitted parasites than females. There appeared to be no segregation of resources between males and females in late August, although the diet of both male and female ninespine stickleback shifted towards more benthic organisms, compared with July. Differences in d13C isotope, diet composition and infections of co-occurring parasites demonstrated that sympatric ninespine stickleback and Arctic char Salvelinus alpinus captured in the littoral zone occupied separate niches. Ninespine stickleback preyed mainly on zooplankton and chironomids, while Arctic char consumed a greater variety of prey items, including zooplankton and larger-sized prey such as insects and ninespine stickleback. The multifaceted approach improved our understanding of the trophic ecology of ninespine stickleback in southern Baffin Island and quantified resource use and dietary overlap with Arctic char.