2 resultados para Anisotropie Gefüge Festigkeitsuntersuchung

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aufbau und Ausdehnung der Schwermineral-Anreicherungen (Ilmenit, Granat, Amphibol) am Strand südlich Skagens wurden in langen Schürfgräben untersucht. Die Seifenlagen ziehen durchgehend vom Kliff-Fuß bis zur mittleren Meereshöhe hin und liegen meist diskordant auf der alten Strandschichtung. Ihre strandparallele Ausdehnung beträgt bis zu 100 m. Aufgebaut werden sie aus dünnen Schwermineral-Lamellen, die in kleinerem Umfang überall in den Strandablagerungen zu finden sind und hier das Gefüge nachzeichnen (Rippeln, Strandwallschichtung, Schichtstörungen). Die Seifenbildung geht in einem Gebiet mit verstärktem Küstenabtrag vor sich (Lee-Erosion südlich der Hafenmolen von Skagen). Dieses deutet darauf hin, daß die Schwerminerale bei Aufarbeitung bereits vorhandener Sedimente infolge ihres unterschiedlichen hydraulischen Verhaltens Zurückbleiben und schließlich angereichert werden. Die Korngrößenverteilung der Minerale in verschiedenen Sedimentproben zeigen, daß mit steigender Schwermineral-Anreicherung eine Kornverfeinerung und Zunahme der spezifisch schwersten Minerale (opake Erzminerale und Zirkon) auftritt. In ähnlicher Weise werden die Sortierungswerte besser. Die Aufbereitung des Sedimentes wird, in Anlehnung an v. ENGELHARDT (1939), mit einem doppelten Sortierungsvorgang durch die Wasserbewegung am Strand erklärt. Beim Absinken des Sandes nach dem Brecherschwall tritt eine Vorsortierung ein, die den Abtransport der leichteren und größeren Minerale im Sog begünstigt. Verbindungen zu Vorstellungen der Aufbereitungstechnik (Rundherdverfahren) und Hydrodynamik ('laminare Unterschicht') werden hergestellt. Die Dünensande Skagens sind infolge ihres hohen Schwermineralgehaltes und günstiger Äquivalentgrößen der einzelnen Minerale besonders bedeutsam für die Seifenbildung am Strand.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of textural, structural, chemical, and physical properties of fine-grained recent marine sediments leads to the conclusion that only a few compositional factors are responsible for significant changes in mass physical characteristics in the upper meters below sea bottom. Fossil-induced porosity increases water content and liquid limit. It also seems to have partially influenced the plastic limit and plasticity index of calcareous sandy silts from the Red Sea and the western Gulf of Aden so that they become similar to the montmorillonite rich prodelta clays from the Nile Delta. Diagrams based on liquid limit and plasticity loose their original meaning in these cases. Activity of sediments rich in microorganisms can be higher than that of montmorillonitic clay. The shear strength-depth relationship of normally consolidated sediments is surprisingly little influenced by changes in sand or clay content and clay mineralogy. Only high lime content, submarine erosion and beginning cementation increase the strength considerably. Erosional disconformities near the present surface can be deduced from the strength-depth curve when as little as 1 or 2 m sediment have been removed. Flat or irregular strength-depth curves indicate beginning cementation and probably discontinuous sedimentation, provided the composition of the material remains in some degree constant. In our samples diagenetic pyrite, but no recristallisation of carbonates could be detected under the microscope. Underconsolidation and excess pore-water pressure, factors which tend to foster submarine slides, mud lumps, and diapiric folding, seem to be restricted Varito areas with mainly rapidly deposited, homogeneous or layered sediments. But where an abundance of burrowing organisms increases the vertical permeability of the sediment, normal consolidation and stable deposits are to be expected, at least in the upper meters below the present surface. According to 14C-determinations on calcareous microorganisms the rate of deposition of the investigated sediments seems to range from 26 to 167 cm per 1000 years.