46 resultados para Angle of rotation
em Publishing Network for Geoscientific
Resumo:
Eight whole-core samples from Ocean Drilling Program Site 1244, Hydrate Ridge, Cascadia continental margin, were provided to Massachusetts Institute of Technology (Cambridge, Massachusetts, USA) for geotechnical characterization. The samples were collected from depths ranging from 5 to 136 meters below seafloor (mbsf). Seven of the eight whole-core samples were located within the gas hydrate stability zone, whereas the eighth sample was located in the free gas zone. Atterberg limits testing showed that the average liquid limit of the soil is 81% and the average plastic limit is 38%, giving an average plasticity index of 43%. The liquid limit is sensitive to oven drying, shown by a drop in liquid limit to 64% when tests were performed on an oven-dried sample. Loss on ignition averages 5.45 wt%. Constant rate of strain consolidation (CRSC) tests were performed to obtain the compression characteristics of the soil, as well as to determine the stress history of the site. CRSC tests also provided hydraulic conductivity and coefficient of consolidation characteristics for these sediments. The compression ratio (Cc) ranges from 0.340 to 0.704 (average = 0.568). Cc is fairly constant to a depth of 79 mbsf, after which Cc decreases downhole. The recompression ratio (Cr) ranges from 0.035 to 0.064 (average = 0.052). Cr is constant throughout the depth range. In situ hydraulic conductivity varies between 1.5 x 10**-7 and 3 x 10**-8 cm/s and shows no trend with depth. Ko-consolidated undrained compression/extension (CKoUC/E) tests were also performed to determine the peak undrained shear strength, stress-strain curve, and friction angle. The normalized undrained strength ranges from 0.29 to 0.35. The friction angle ranges from 27 to 37. Because of the limited amount of soil, CRSC and CKoUC/E tests were also conducted on resedimented specimens.
Resumo:
We present a first combined environmental magnetic and geochemical investigation of a loess-paleosol sequence (<55 ka) from the Chuanxi Plateau on the eastern margin of the Tibetan Plateau. Detailed comparison between the Ganzi section and the Luochuan section from the Chinese Loess Plateau (CLP) allows quantification of the effects of provenance and climate on pedogenic magnetic enhancement in Chinese loess. Rare earth element patterns and clay mineral compositions indicate that the Ganzi loess originates from the interior of the Tibetan Plateau. The different Ganzi and CLP loess provenances add complexity to interpretation of magnetic parameters in terms of the concentration and grain size of eolian magnetic minerals. Enhanced paleosol magnetism via pedogenic formation of ferrimagnetic nanoparticles is observed in both sections, but weaker ferrimagnetic contributions, finer superparamagnetic (SP) particles and stronger chemical weathering are found in the Ganzi loess, which indicates the action of multiple pedogenic processes that are dominated by the combined effects of mean annual precipitation (MAP), potential evapotranspiration (PET), organic matter and aluminium content. Under relatively high MAP and low PET conditions, high soil moisture favours transformation of ferrimagnetic minerals to hematite, which results in a relatively higher concentration of hematite but weaker ferrimagnetism of Ganzi loess. Initial growth of superparamagnetic (SP) particles is also documented in the incipient loess at Ganzi, which directly reflects the dynamic formation of nano-sized pedogenic ferrimagnets. A humid pedogenic environment with more organic matter and higher Al content also helps to form finer SP particles. We therefore propose that soil water balance, rather than solely rainfall, dominates the type, concentration and grain size of secondary ferrimagnetic minerals produced by pedogenesis.