27 resultados para Angelico, fra, approximately 1400-1455.

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An integrated instrument package for measuring and understanding the surface radiation budget of sea ice is presented, along with results from its first deployment. The setup simultaneously measures broadband fluxes of upwelling and downwelling terrestrial and solar radiation (four components separately), spectral fluxes of incident and reflected solar radiation, and supporting data such as air temperature and humidity, surface temperature, and location (GPS), in addition to photographing the sky and observed surface during each measurement. The instruments are mounted on a small sled, allowing measurements of the radiation budget to be made at many locations in the study area to see the effect of small-scale surface processes on the large-scale radiation budget. Such observations have many applications, from calibration and validation of remote sensing products to improving our understanding of surface processes that affect atmosphere-snow-ice interactions and drive feedbacks, ultimately leading to the potential to improve climate modelling of ice-covered regions of the ocean. The photographs, spectral data, and other observations allow for improved analysis of the broadband data. An example of this is shown by using the observations made during a partly cloudy day, which show erratic variations due to passing clouds, and creating a careful estimate of what the radiation budget along the observed line would have been under uniform sky conditions, clear or overcast. Other data from the setup's first deployment, in June 2011 on fast ice near Point Barrow, Alaska, are also shown; these illustrate the rapid changes of the radiation budget during a cold period that led to refreezing and new snow well into the melt season.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a deuterium excess (d) record from an ice core drilled on a small ice cap in Svalbard in 1997. The core site is located at Lomonosovfonna at 1255 m asl, and the analyzed time series spans the period 1400-1990 A.D. The record shows pronounced multidecadal to centennial-scale variations coherent with sea surface temperature changes registered in the subtropical to southern middle-latitude North Atlantic during the instrumental period. We interpret the negative trend in the deuterium excess during the 1400s and 1500s as an indication of cooling in the North Atlantic associated with the onset of the Little Ice Age. Consistently positive anomalies of d after 1900, peaking at about 1950, correspond with well-documented contemporary warming. Yet the maximum values of deuterium excess during 1900-1990 are not as high as in the early part of the record (pre-1550). This suggests that the sea surface temperatures during this earlier period of time in the North Atlantic to the south of approximately 45°N were at least comparable with those registered in the 20th century before the end of the 1980s. We examine the potential for a cold bias to exist in the deuterium excess record due to increased evaporation from the local colder sources of moisture having isotopically cold signature. It is argued that despite a recent oceanic warming, the contribution from this local moisture to the Lomonosovfonna precipitation budget is still insufficient to interfere with the isotopic signal from the primary moisture region in the midlatitude North Atlantic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cariaco Basin is a 1400-m-deep depression approximately 160 km long by 70 km wide located off the central Venezuelan coast . It is connected to the Atlantic Ocean by a sill ~100-m-deep, and two slightly deeper channels that breech it; Canal Centinela (146-m-deep) and Canal de la Tortuge (135-m-deep). High surface production rates and restricted circulation result in anoxic waters below ca. 275 m. The depth of the oxycline varies between 250 and 320 m and is independent of density. Rather, fluctuations in oxycline depth appear to be due to lateral intrusions of Caribbean Sea water that are linked to eddies along the continental shelf. A mooring with five sediment traps (Z, A-D) is located in the eastern Cariaco Basin. Traps A-D have been in place since November 1995. Trap A is located in oxic waters at 226 ± 6 m. Trap B is located at 407 ± 3 m and Trap D is located at 1205 ± 3 m. Trap C was located at a depth of 880 ± 2 m from Jan. 1996 to Nov. 2000, and was moved to 807 ± 2 m in Nov. 2000. A fifth trap, Z, was added in November 2003 at 110 m for the first 6 months, and at 150 m thereafter. All five sediment traps are coneshaped with a 0.5 m**2 opening that is covered with a baffle top to reduce turbulence. The mooring is deployed for six-month intervals and each sample collection cup is filled with a buffered 3.2% formalin solution as a preservative for the accumulating organic matter. The cups are numbered 1-13, with cup 1 collecting for the two-week interval immediately following deployment, and cup 13 collecting for the 2 weeks immediately before recovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Instrumental monitoring of the climate at high northern latitudes has documented the ongoing warming of the last few decades. Climate modelling has also demonstrated that the global warming signal will be amplified in the polar region. Such temperature increases would have important implications on the ecosystem and biota of the Barents Sea. This study therefore aims to reconstruct the climatic changes of the Barents Sea based on benthic foraminifera over approximately the last 1400 years at the decadal to sub-decadal scale. Oxygen and carbon isotope analysis and benthic foraminiferal species counts indicate an overall warming trend of approximately 2.6°C through the 1400-year record. In addition, the well-documented cooling period equating to the 'Little Ice Age' is evident between c. 1650 and 1850. Most notably, a series of highly fluctuating temperatures are observed over the last century. An increase of 1.5°C is shown across this period. Thus for the first time we are able to demonstrate that the recent Arctic warming is also reflected in the oceanic micro-fauna.