74 resultados para Amino-acid Sites
em Publishing Network for Geoscientific
Resumo:
Biogenic calcareous and siliceous sediments were drilled at ODP Sites 689 and 690 on the Maud Rise, Antarctic Ocean. We analyzed dissolved combined amino acids (DCAA) and dissolved free amino acids (DFAA) in interstitial waters in order to characterize the amino acids in dissolved organic matter. The DFAA was predominant over the DCAA in interstitial waters at Sites 689 and 690, which contradicted the previous results from interstitial water and seawater studies. The DCAA in the interstitial waters probably originated from calcareous biogenic debris with less amounts of siliceous debris. Although glutamic acid constituted 41% of the total concentration of DCAA, it accounted for only 1% of the total concentration of DFAA due to the adsorption and/or reaction with biogenic carbonate. Ornithine, a nonprotein amino acid, is a decomposed product of arginine and made up 17 mol% of the total DFAA and. The total hydrolyzable amino acids (=DCAA + DFAA) accounted for 5 to 28% of the dissolved organic carbon (DOC) concentration, which implied that high molecular weight organic matter was a major contributor for the DOM (dissolved organic matter) in interstitial waters. Fairly positive correlation between the dissolved manganese and the total DCAA values suggested that the redox condition plays a significant role in controlling the total DCAA content. A small decrease in the sulfate concentration in the interstitial waters from both sites suggested fairly low microbial activity by sulfate-reducing bacteria.
Resumo:
Proteins and their amino acid building blocks form a major group of biomolecules in all organisms. In the sedimentary environment, proteins and amino acids have two sources: (1) soft tissues and detritus and (2) biotic skeletal structures, dominantly from calcium carbonate-secreting organisms. The focus of this report is on D/L ratios and concentrations of selected amino acids in interstitial waters collected during ODP Leg 201. The Peru margin sites are generally low in carbonates, whereas the open-ocean sites are more carbonate rich. Seifert et al. (1990, doi:10.2973/odp.proc.sr.112.152.1990) reported amino acid concentrations in interstitial waters from Site 681 (ODP Leg 112) comparable to Leg 201 Site 1229.
Resumo:
In this study, we demonstrate the utility of amino acid geochronology based on single-foraminiferal tests in Quaternary sediment cores from the Queensland margin, Australia. The large planktonic foraminifer Pulleniatina obliquiloculata is ubiquitous in shelf, slope, and basin sediments of north Queensland as well as pantropical oceans. Fossil tests are resistant to dissolution, and retain substantial concentrations of amino acids (2-4 nmol/mg of shell) over hundreds of thousands of years. Amino acid D and L isomers of aspartic acid (Asp) and glutamic acid (Glu) were separated using reverse phase chromatography, which is sensitive enough to analyze individual foraminifera tests. In all, 462 Pulleniatina tests from 80 horizons in 11 cores exhibit a systematic increase in D/L ratios down core. D/L ratios were determined in 32 samples whose ages are known from AMS 14C analyses. In all cases, the Asp and Glu D/L ratios are concordant with 14C age. D/L ratios of equal-age samples are slightly lower for cores taken from deeper water sites, reflecting the sensitivity of the rate of racemization to bottom water temperature. Beyond the range of 14C dating, previously identified marine oxygen-isotope stage boundaries provide approximate ages of the sediments up to about 500,000 years. For this longer time frame, D/L ratios also vary systematically with isotope-correlated ages. The rate of racemization for Glu and Asp was modeled using power functions. These equations can be used to estimate ages of samples from the Queensland margin extending back at least 500,000 years. This analytical approach provides new opportunities for geochronological control necessary to understand fundamental sedimentary processes affecting a wide range of marine environments.