40 resultados para Amazon River basin
em Publishing Network for Geoscientific
Resumo:
We have investigated the delivery of terrestrial organic carbon (OC) to the Amazon shelf and deep sea fan based on soil marker bacteriohopanepolyols (BHPs; adenosylhopane and related compounds) and branched glycerol dialkyl glycerol tetraethers (GDGTs), as well as on 14C dating of bulk organic matter. The microbial biomarker records show persistent burial of terrestrial OC, evidenced by almost constant and high BIT values (0.6) and soil marker BHP concentration [80-230 µg/g TOC (total OC)] on the late Holocene shelf and even higher BIT values (0.8-0.9), but lower and more variable soil-marker BHP concentration (40-100 µg/g TOC), on the past glacial deep sea fan. Radiocarbon data show that OC on the shelf is 3-4 kyr older than corresponding bivalve shells, emphasizing the presence of old carbon in this setting. We observe comparable and unexpectedly invariant BHP composition in both marine sediment records, with a remarkably high relative abundance of C-35 amino BHPs including compounds specific for aerobic methane oxidation on the shelf (avg. 50% of all BHPs) and the fan (avg. 40%). Notably, these marine BHP signatures are strikingly similar to those of a methane-producing floodplain area in one of the Amazonian wetland (várzea) regions. The observation indicates that BHPs in the marine sediments may have initially been produced within wetland regions of the Amazon basin and may therefore document persistent export from terrestrial wetland regions, with subsequent re-working in the marine environment, both during recent and past glacial climate conditions.
Resumo:
Paleoenvironmental studies based on terrigenous biomarker proxies from sediment cores collected close to the mouth of large river systems rely on a proper understanding of the processes controlling origin, transport and deposition of biomarkers. Here, we contribute to the understanding of these processes by analyzing long-chain n-alkanes from the Amazon River system. We use the dD composition of long-chain n-alkanes from river bed sediments from the Amazon River and its major tributaries, as well as marine core-top samples collected off northeastern South America as tracers for different source areas. The d13C composition of the same compounds is used to differentiate between long-chain n-alkanes from modern forest vegetation and petrogenic organic matter. Our d13C results show depleted d13C values (-33 to -36 per mil) in most samples, indicating a modern forest source for most of the samples. Enriched values (-31 to -33 per mil) are only found in a few samples poor in organic carbon indicating minor contributions from a fossil petrogenic source. Long-chain n-alkane dD analyses show more depleted values for the western tributaries, the Madeira and Solimões Rivers (-152 to -168 per mil), while n-alkanes from the lowland tributaries, the Negro, Xingu and Tocantins Rivers (-142 to -154 per mil), yield more enriched values. The n-alkane dD values thus reflect the mean annual isotopic composition of precipitation, which is most deuterium-depleted in the western Amazon Basin and more enriched in the eastern sector of the basin. Samples from the Amazon estuary show a mixed long-chain n-alkane dD signal from both eastern lowland and western tributaries. Marine core-top samples underlying the Amazon freshwater plume yield dD values similar to those from the Amazon estuary, while core-top samples from outside the plume showed more enriched values. Although the variability in the river bed data precludes quantitative assessment of relative contributions, our results indicate that long-chain n-alkanes from the Amazon estuary and plume represent an integrated signal of different regions of the onshore basin. Our results also imply that n-alkanes are not extensively remineralized during transport and that the signal at the Amazon estuary and plume includes refractory compounds derived from the western sector of the Basin. These findings will aid in the interpretation of plant wax-based records of marine sediment cores collected from the adjacent ocean.
Resumo:
New data on chemical and trace component compositions of acidic and low acidic swamp waters and other types of low mineralized waters are reported in the paper. Special attention is paid to dissolved organic compounds: fulvic and humic acids, bitumen, and hydrocarbons. For the first time detailed data on organic trace components (alkanes, pentacyclic terpenoids, steranes, alkylbenzenes, naphthalenes, phenanthrenes, tetraarenes, etc.) in the swamp waters of the Western Siberia: are reported.
Resumo:
While large-scale transverse drainages (TDs) such as those of the Susquehanna River above Harrisburg, PA, have been recognized since the 19th century, there have been no systematic surveys done of TDs since that of Ver Steeg's in 1930. Here, the results are presented of a topographic and statistical analysis of TDs in the Susquehanna River basin using Google Earth and associated overlays. 653 TDs were identified in the study area, 95% of which contain streams with discharges of less than 10 m3/s. TD depths ranged from a 23 m deep water gap near Blain, PA, to the 539 m deep gorge of the Juniata River through Jacks Mountain. Although TD depth tended to increase with stream size, many small streams were located in deep gaps, and eight streams with discharges of 10 m3/s or less were found in gorges whose depths matched or exceeded the deepest TD of the Susquehanna, the largest stream in the basin. Streams of less than 10 m3/s made up the majority of TDs regardless of the rock type capping the breached structure. Overall, TDs through sandstone-capped ridges were deeper than those topped by shales, and TDs in both sandstones and shales displayed a lognormal distribution of depths, which may be indicative of a preferred value. Stream flow direction was primarily perpendicular to local structural strike, with 47% of streams flowing NW and 53% flowing SE. 19% of the TDs were found to be in alignment with at least one other TD, with aligned segment lengths ranging from .5 to 14.8 km. The majority of TDs were in rocks of Paleozoic age. The techniques described here allow the frequency and distribution of TDs to be quantified so that they can be integrated into models of basin evolution.
Resumo:
The aim of this paper is to find out if there is a significant difference in using NDVI dataset processed by harmonic analysis method to evaluate its dynamic and response to climate change, compared with the original data.
Resumo:
This study describes detailed partitioning of phytomass carbon (C) and soil organic carbon (SOC) for four study areas in discontinuous permafrost terrain, Northeast European Russia. The mean aboveground phytomass C storage is 0.7 kg C/m**2. Estimated landscape SOC storage in the four areas varies between 34.5 and 47.0 kg C/m**2 with LCC (land cover classification) upscaling and 32.5-49.0 kg C/m**2 with soil map upscaling. A nested upscaling approach using a Landsat thematic mapper land cover classification for the surrounding region provides estimates within 5 ± 5% of the local high-resolution estimates. Permafrost peat plateaus hold the majority of total and frozen SOC, especially in the more southern study areas. Burying of SOC through cryoturbation of O- or A-horizons contributes between 1% and 16% (mean 5%) of total landscape SOC. The effect of active layer deepening and thermokarst expansion on SOC remobilization is modeled for one of the four areas. The active layer thickness dynamics from 1980 to 2099 is modeled using a transient spatially distributed permafrost model and lateral expansion of peat plateau thermokarst lakes is simulated using geographic information system analyses. Active layer deepening is expected to increase the proportion of SOC affected by seasonal thawing from 29% to 58%. A lateral expansion of 30 m would increase the amount of SOC stored in thermokarst lakes/fens from 2% to 22% of all SOC. By the end of this century, active layer deepening will likely affect more SOC than thermokarst expansion, but the SOC stores vulnerable to thermokarst are less decomposed.
Resumo:
We analyzed the distribution of branched tetraether membrane lipids derived from soil bacteria in a marine sediment record that was recovered close to the Congo River outflow, and the results enabled us to reconstruct large-scale continental temperature changes in tropical Africa that span the past 25,000 years. Tropical African temperatures gradually increased from ~21° to 25°C over the last deglaciation, which is a larger warming than estimated for the tropical Atlantic Ocean. A direct comparison with sea-surface temperature estimates from the same core revealed that the land-sea temperature difference was, through the thermal pressure gradient, an important control on central African precipitation patterns.
Resumo:
A method is presented to study carbohydrate composition of marine objects involved into sedimento- and diagenesis (plankton, particulate matter, benthos, and bottom sediments). Analysis of the carbohydrates is based on consecutive separation of their fractions with different solvents (water, alkali, and acid). Ratios of carbohydrate fractions allows to evaluate lability of carbohydrate complexes. They are also usable as an indicators of biogeochemical processes in the ocean, as well of genesis and degree of transformation of organic matter in bottom sediments and nodules. Similarity in monosaccharide composition is shown for dissolved organic matter and aqueous and alkaline fractions of seston and particulate matter.