4 resultados para Alveolar recruitment maneuver

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vermetids form reefs in sub-tropical and warm-temperate waters that protect coasts from erosion, regulate sediment transport and accumulation, serve as carbon sinks and provide habitat for other species. The gastropods that form these reefs brood encapsulated larvae; they are threatened by rapid environmental changes since their ability to disperse is very limited. We used transplant experiments along a natural CO2 gradient to assess ocean acidification effects on the reef-building gastropod Dendropoma petraeum. We found that although D. petraeum were able to reproduce and brood at elevated levels of CO2, recruitment success was adversely affected. Long-term exposure to acidified conditions predicted for the year 2100 and beyond caused shell dissolution and a significant increase in shell Mg content. Unless CO2 emissions are reduced and conservation measures taken, our results suggest these reefs are in danger of extinction within this century, with significant ecological and socioeconomic ramifications for coastal systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the nonconsumptive effects (NCEs) of predatory dogwhelks (Nucella lapillus) on intertidal barnacle (Semibalanus balanoides) recruitment through field experiments on the Gulf of St. Lawrence coast and the Atlantic coast of Nova Scotia, Canada. We studied the recruitment seasons (May-June) of 2011 and 2013. In 2011, the Gulf coast had five times more nearshore phytoplankton (food for barnacle larvae and recruits) during the recruitment season and yielded a 58% higher barnacle recruit density than the Atlantic coast at the end of the recruitment season. In 2013, phytoplankton levels and barnacle recruit density were similar on both coasts and also lower than for the Gulf coast in 2011. Using the comparative-experimental method, the manipulation of dogwhelk presence (without allowing physical contact with prey) revealed that dogwhelk cues limited barnacle recruitment under moderate recruit densities (Atlantic 2011/2013 and Gulf 2013) but had no effect under a high recruit density (Gulf 2011). Barnacle recruits attract settling larvae through chemical cues. Thus, the highest recruit density appears to have neutralized dogwhelk effects. This study suggests that the predation risk perceived by settling larvae may decrease with increasing recruit density and that prey food supply may indirectly influence predator NCEs on prey recruitment.