2 resultados para Aluminate Based Composites
em Publishing Network for Geoscientific
Resumo:
Based upon high-resolution thermal-infrared Moderate-Resolution Imaging Spectroradiometer (MODIS) satellite imagery in combination with ERA-Interim atmospheric reanalysis data, we derived long-term polynya parameters such as polynya area, thin-ice thickness distribution and ice-production rates from daily cloud-cover corrected thin-ice thickness composites. Our study is based on a thirteen year investigation period (2002-2014) for the austral winter (1 April to 30 September) in the Antarctic Southern Weddell Sea. The focus lies on coastal polynyas which are important hot spots for new-ice formation, bottom-water formation and heat/moisture release into the atmosphere. MODIS has the capability to resolve even very narrow coastal polynyas. Its major disadvantage is the sensor limitation due to cloud cover. We make use of a newly developed and adapted spatial feature reconstruction scheme to account for cloud-covered areas. We find the sea-ice areas in front of Ronne and Brunt Ice Shelf to be the most active with an annual average polynya area of 3018 ± 1298 and 3516 ± 1420 km2 as well as an accumulated volume ice production of 31 ± 13 and 31 ± 12 km**3, respectively. For the remaining four regions, estimates amount to 421 ± 294 km**2 and 4 ± 3 km**3 (Antarctic Peninsula), 1148 ± 432 km**2 and 12 ± 5 km**3 (Iceberg A23A), 901 ± 703 km**2 and 10 ± 8 km**3 (Filchner Ice Shelf) as well as 499 ± 277 km**2 and 5 ± 2 km**3 (Coats Land). Our findings are discussed in comparison to recent studies based on coupled sea-ice/ocean models and passive-microwave satellite imagery, each investigating different parts of the Southern Weddell Sea.
Resumo:
While the input of river-alkalinity into seawater is relatively well known, the complementary acidity production is poorly understood. Using the major-element budget of seafloor alteration of the upper 500 m of 120-Ma-old oceanic crust at DSDP/ODP Sites 417A, 417D and 418A in the central western Atlantic, we estimate the acidity flux associated with the low-temperature weathering of the upper oceanic crust. The acidity flux is calculated based on major-element fluxes and charge-balance considerations. The relevant chemical fluxes from seawater to the upper crust are 4.1+-0.1; 1.4+-1.4; 2.2+-0.6 and -12+-2 10**11 mol/yr for K, Mg, Na and silicate-Ca, respectively. The associated acidity flux is (3.5+-3)10**11 eq/y. Relative to continental weathering, these fluxes are significant for K and silicate-Ca, but are minor for Na, Mg and acidity. Thus, riverine fluxes of alkalinity are not significantly balanced by acidity fluxes from low-temperature upper ocean crust alteration.