7 resultados para Almost Sure Convergence

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined diatom assemblages in a series of remarkable laminated diatomaceous ooze (LDO) horizons in the marine sediments from Integrated Ocean Drilling Program (IODP) Site U1304 to reconstruct the middle-to-late Pleistocene paleoceanographic evolution of the northern North Atlantic Ocean. Four confirmed diatom biohorizons combined with calcareous nannofossil and paleomagnetic stratigraphies established the chronological framework for the material. The planktonic, araphid, needle-like species Thalassiothrix longissima was the greatest contributor to the LDO facies. From the results of a principal component analysis using the percent abundances of 65 significant (p = 5%) diatom taxa, except for Tx. longissima, which was extremely dominant in almost all horizons observed, we identified two principal component (PC) axes. Taxa probably associated with the stratigraphic distribution of the major zonal marker Neodenticula seminae (ranging from 1.26 to 0.84 Ma in this ocean) loaded on PC1 with a high value. PC2 was related to the ocean surface temperature. The stratigraphic variability of the PC2 score indicated that switching between warm- and cold-water assemblages occurred concurrently with LDO deposition (or extreme Tx. longissima dominance) episodes in several horizons (particularly after 0.84 Ma), suggesting that the Subarctic Convergence (SAC) oceanic front passed over Site U1304 during Pleistocene glacial/interglacial cycles. Our floral evidence supports the model of nearly monospecific LDO formation caused by the enhanced physical accumulation of particular diatoms such as Tx. longissima. On the other hand, Nd. seminae, which probably contributes to spring phytoplankton blooms in the modern ocean, was present only between 1.26 and 0.84 Ma in this area. Thus, we infer that the main contributor of export flux in the regional annual primary production cycle would have shifted drastically from one of a spring phytoplankton bloom leader (Nd. seminae) to minor but mass dump assemblages (Tx. longissima etc.) in the mid-Pleistocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fast-flowing ice streams discharge most of the ice from the interior of the Antarctic Ice Sheet coastward. Understanding how their tributary organisation is governed and evolves is essential for developing reliable models of the ice sheet's response to climate change. Despite much research on ice-stream mechanics, this problem is unsolved, because the complexity of flow within and across the tributary networks has hardly been interrogated. Here I present the first map of planimetric flow convergence across the ice sheet, calculated from satellite measurements of ice surface velocity, and use it to explore this complexity. The convergence map of Antarctica elucidates how ice-stream tributaries draw ice from the interior. It also reveals curvilinear zones of convergence along lateral shear margins of streaming, and abundant convergence ripples associated with nonlinear ice rheology and changes in bed topography and friction. Flow convergence on ice-stream tributaries and their feeding zones is markedly uneven, and interspersed with divergence at distances of the order of kilometres. For individual drainage basins as well as the ice sheet as a whole, the range of convergence and divergence decreases systematically with flow speed, implying that fast flow cannot converge or diverge as much as slow flow. I therefore deduce that flow in ice-stream networks is subject to mechanical regulation that limits flow-orthonormal strain rates. These properties and the gridded data of convergence and flow-orthonormal strain rate in this archive provide targets for ice- sheet simulations and motivate more research into the origin and dynamics of tributarization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Miocene to Recent species of planktic foraminifera in the Globorotalia (Globoconella) lineage evolved entirely within the thermocline. All species are most abundant within subtropical-temperate watermasses throughout their history. The near stasis in distribution within the thermocline and the subtropical convergence suggests the major morphological changes in Globorotalia (Globoconella) may have occurred through habitat subdivision rather than by vicariant shifts into new watermasses. At the Rio Grande Rise, in the South Atlantic, modern G. inflata is 0.66-0.84? more positive for delta18O than the most enriched coexisting Globigerinoides sacculifer and probably grows in the mid thermocline deeper than 325 m. All extinct globoconellid species have mean delta18O ratios 0.5-0.8? more positive than Globigerinoides trilobus and G. sacculifer and probably lived within the thermocline as well. Major events in skeletal evolution are poorly correlated with changes in delta18O in this group. These include evolutionary transitions to compressed, smooth-walled tests and acquisition of keels. In addition, morphological reversals from the umbilically-inflated G. conomiozea to biconvex G. pliozea and to unkeeled G. puncticulata occur in the absence of changes in delta18O signature. Instead, the ranges of delta18O between different species almost completely overlap once corrected for temporal changes in delta18O of sea water. Foraminifera morphologies have been widely considered to evolve in response to changes in watermasses or depth habitats. However, the variety of skeletal shapes in the globoconellid lineage apparently are not adaptations to a progressive radiation from the surface mixed layer into deeper waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the South Pacific Convergence Zone (SPCZ), the variability in a sub-seasonally resolved microatoll Porites colony Sr/Ca record from Tonga and a previously published high-resolution record from Fiji are strongly influenced by sea surface temperature (SST) over the calibration period from 1981 to 2004 (R^2 = 0.67 - 0.68). However, the Sr/Ca-derived SST correlation to instrumental SST decreases back in time. The lower frequency secular trend (~1°C) and decadal-scale (~2 - 3°C) modes in Sr/Ca-derived SST are almost two times larger than that observed in instrumental SST. The coral Sr/Ca records suggest that local effects on SST generate larger amplitude variability than gridded SST products indicate. Reconstructed d18O of seawater (d18Osw) at these sites correlate with instrumental sea surface salinity (SSS; r = 0.64 - 0.67) but not local precipitation (r = -0.10 to - 0.22) demonstrating that the advection and mixing of different salinity water masses may be the predominant control on d18Osw in this region. The Sr/Ca records indicate SST warming over the last 100 years and appears to be related to the expansion of the western Pacific warm pool (WPWP) including an increasing rate of expansion in the last ~20 years. The reconstructed d18Osw over the last 100 years also shows surface water freshening across the SPCZ. The warming and freshening of the surface ocean in our study area suggests that the SPCZ has been shifting (expanding) southeast, possibly related to the southward shift and intensification of the South Pacific gyre over the last 50 years in response to strengthened westerly winds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 328 cm-long piston core (KODOS 02-01-02) collected from the northeast equatorial Pacific at 16°12'N, 125°59'W was investigated for eolian mass fluxes and grain sizes to test these proxies as a tool for the paleo-position of the Intertropical Convergence Zone (ITCZ). The eolian mass fluxes of the lower interval below 250 cm (15.5-7.6 Ma) are very uniform at 5 +/- 1 mg/cm**2/kyr, while those of the upper interval above 250 cm (from 7.6 Ma) are over 2 times higher than the lower interval at 12 +/- 1 mg/cm**2/kyr. The median grain size of the eolian dusts in the lower interval increases from 8.4 Phi to 8.0 Phi downward, while that of the upper interval varies in a narrow range from 8.8 Phi to 8.6 Phi. The determined values compare well in magnitude to those of central Pacific sediments for the upper interval and equatorial and southeast Pacific sediments for the lower interval. This result suggests a possibility that the study site had been under the influence of southeast trade winds at its earlier depositional period due to the northerly position of the ITCZ, and subsequently of the northeast trade winds for a later period when the upper sediments were deposited. This interpretation is consistent with a mineralogical and geochemical study published elsewhere that assigned the provenance of the study core dust to Central/South America for the lower interval and to Asia for the upper interval. This study suggests that the distinct differences in eolian mass flux and grain size observed across the ITCZ can be used to trace the paleo-latitude of the ITCZ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Predicting the impacts of environmental change on marine organisms, food webs, and biogeochemical cycles presently relies almost exclusively on short-term physiological studies, while the possibility of adaptive evolution is often ignored. Here, we assess adaptive evolution in the coccolithophore Emiliania huxleyi, a well-established model species in biological oceanography, in response to ocean acidification. We previously demonstrated that this globally important marine phytoplankton species adapts within 500 generations to elevated CO2. After 750 and 1000 generations, no further fitness increase occurred, and we observed phenotypic convergence between replicate populations. We then exposed adapted populations to two novel environments to investigate whether or not the underlying basis for high CO2-adaptation involves functional genetic divergence, assuming that different novel mutations become apparent via divergent pleiotropic effects. The novel environment "high light" did not reveal such genetic divergence whereas growth in a low-salinity environment revealed strong pleiotropic effects in high CO2 adapted populations, indicating divergent genetic bases for adaptation to high CO2. This suggests that pleiotropy plays an important role in adaptation of natural E. huxleyi populations to ocean acidification. Our study highlights the potential mutual benefits for oceanography and evolutionary biology of using ecologically important marine phytoplankton for microbial evolution experiments.