7 resultados para Almost Common Value Auctions
em Publishing Network for Geoscientific
Resumo:
The solubility of Re and Au in haplobasaltic melt has been investigated at 1673-2573 K, 0.1 MPa-2 GPa and IW-1 to +2.5, in both carbon-saturated and carbon-free systems. Results extend the existing, low pressure and temperature, dataset to more accurately predict the results of metal-silicate equilibrium at the base of a terrestrial magma ocean. Solubilities in run-product glasses were measured by laser ablation ICP-MS, which allows for the explicit assessment of contamination by metal inclusions. The Re and Au content of demonstrably contaminant-free glasses increases with temperature, and shows variation with oxygen fugacity (fO2) similar to previous results, although lower valence states for Re (1+, 2+) are suggested by the data. At 2 GPa, and Delta IW of +1.75 to +2, the metal-silicate partition coefficient for Re (DMet/Sil) is defined by the relation LogD[met/sil][Re] = 0.50(±0.022)*10**4/T(K)+3.73(±0.095) For metal-silicate equilibrium to endow Earth's mantle with the observed time-integrated chondritic Re/Os, (and hence 187Os/188Os), DMet/Sil for both elements must converge to a common value. Combined with previously measured DMet/Sil for Os, the estimated temperature at which this convergence occurs is 4500 (±900) K. At this temperature, however, the Re and Os content of the equilibrated silicate is ~100-fold too low to explain mantle abundances. In the same experiments, much lower Dmet/sil values have been determined for Au, and require the metal-silicate equilibration temperature to be <3200 K, as hotter conditions result in an excess of Au in the mantle. Thus, the large disparity in partitioning between Re or Os, and Au at core-forming temperatures argues against their mantle concentrations set solely by metal-silicate equilibrium at the base of a terrestrial magma ocean.
Resumo:
We have analyzed the Nd isotopic composition of both ancient seawater and detrital material from long sequences of carbonated oozes of the South Indian Ocean which are ODP Site 756 (Ninety East Ridge (-30°S), 1518 m water depth) and ODP Site 762 (Northwest Australian margin, 1360 m water depth). The measurements indicate that the epsilon-Nd changes in Indian seawater over the last 35 Ma result from changes in the oceanic circulation, large volcanic and continental weathering Nd inputs. This highlights the diverse nature of those controls and their interconnections in a small area of the ocean. These new records combined with those previously obtained at the equatorial ODP Sites 757 and 707 in the Indian Ocean (Gourlan et al., 2008, doi:10.1016/j.epsl.2007.11.054) established that the distribution of intermediate seawater epsilon-Nd was uniform over most of the Indian Ocean from 35 Ma to 10 Ma within a geographical area extending from 40°S to the equator and from -60°E to 120°E. However, the epsilon-Nd value of Indian Ocean seawater which kept an almost constant value (at about -7 to -8) from 35 to 15 Ma rose by 3 epsilon-Nd units from 15 to 10 Ma. This sharp increase has been caused by a radiogenic Nd enrichment of the water mass originating from the Pacific flowing through the Indonesian Passage. Using a two end-members model we calculated that the Nd transported to the Indian Ocean through the Indonesian Pathway was 1.7 times larger at 10 Ma than at 15 Ma. The Nd isotopic composition of ancient seawater and that of the sediment detrital component appear to be strongly correlated for some specific events. A first evidence occurs between 20 and 15 Ma with two positive spikes recorded in both epsilon-Nd signals that are clearly induced by a volcanic crisis of, most likely, the St. Paul hot-spot. A second evidence is the very large epsilon-Nd decrease recorded at ODP Sites 756 and 762 during the past 10 Ma which has never been previously observed. The synchronism between the epsilon-Nd decrease in seawater from 10 to 5 Ma and evidences of desertification in the western part of the nearly Australian continent suggests enhanced weathering inputs in this ocean from this continent as a result of climatic changes.
Resumo:
Seventeen whole-rock samples, generally taken at 25- to 50-meter intervals from 5 to 560 meters sub-basement in Deep Sea Drilling Project Hole 504B, were analyzed for 87Sr/86Sr ratios, and rubidium and strontium concentrations. Ten of these samples also were analyzed for Pb-isotope composition. Strontium-isotope ratios for eight samples from the upper 260 meters of the hole range from 0.70287 to 0.70377, with a mean of 0.70320. In the interval 330 to 560 meters, five samples have a restricted range of 0.70259 to 0.70279, with a mean of 0.70266, almost identical to the average value of fresh mid-ocean-ridge basalts. In the interval 260 to 330 meters, approximately intermediate strontium- isotope ratios are found. The higher 87Sr/86Sr ratios in the upper part of the hole can be interpreted in terms of strontium-isotope alteration during basalt-sea-water interaction. Relative to average fresh mid-ocean ridge basalts, the upper 260 meters of basalts are enriched by an average of about 9% in sea-water strontium 87Sr/86Sr = 0.7091). This Sr presumably is located in the smectites, which, as the main secondary minerals throughout the hole, replace olivine and matrix glass and locally fill vesicles (analyzed samples contained no veins). The strontium-isotope data strongly suggest that the integrated flux of sea water through the upper part of the Hole 504B crust has been greater than through the lower part. This is also suggested by (1) the common occurrence of Feoxide- hydroxide minerals as alteration products above 270 meters, but their near absence below 320 meters, (2) the presence of vein calcite above 320 meters, but its near absence below this level, and (3) the occurrence of vein pyrite only below a depth of 270 meters. Sea-water circulation in the lower basalts may have been partly restricted by the greater number of relatively impermeable massive lava flows below 230 meters sub-basement. Although sufficient sea water was present within the lower part of the hole to produce smectitic alteration products, the overall water /rock ratio was low enough to prevent significant modification of strontium-isotope ratios. Lead-isotope ratios of Hole 504B basalts form approximately linear arrays in plots of 208Pb/204Pb and 207Pb/204Pb versus 206Pb/204Pb. The arrays are similar to those reported for basalts from other mid-ocean ridges. There is no trend in Hole 504B lead-isotope ratios with vertical position in the basement. The arrays indicate that the lead-isotope composition of the upper mantle from which the Hole 504B basaltic melts were derived was inhomogeneous.
Resumo:
Responses by marine species to ocean acidification (OA) have recently been shown to be modulated by external factors including temperature, food supply and salinity. However the role of a fundamental biological parameter relevant to all organisms, that of body size, in governing responses to multiple stressors has been almost entirely overlooked. Recent consensus suggests allometric scaling of metabolism with body size differs between species, the commonly cited 'universal' mass scaling exponent (b) of ¾ representing an average of exponents that naturally vary. One model, the Metabolic-Level Boundaries hypothesis, provides a testable prediction: that b will decrease within species under increasing temperature. However, no previous studies have examined how metabolic scaling may be directly affected by OA. We acclimated a wide body-mass range of three common NE Atlantic echinoderms (the sea star Asterias rubens, the brittlestars Ophiothrix fragilis and Amphiura filiformis) to two levels of pCO2 and three temperatures, and metabolic rates were determined using closed-chamber respirometry. The results show that contrary to some models these echinoderm species possess a notable degree of stability in metabolic scaling under different abiotic conditions; the mass scaling exponent (b) varied in value between species, but not within species under different conditions. Additionally, we found no effect of OA on metabolic rates in any species. These data suggest responses to abiotic stressors are not modulated by body size in these species, as reflected in the stability of the metabolic scaling relationship. Such equivalence in response across ontogenetic size ranges has important implications for the stability of ecological food webs.
Resumo:
Pollen productivity estimates (PPE) are used to quantitatively reconstruct variations in vegetation within a specific distance of the sampled pollen archive. Here, for the first time, PPEs from Siberia are presented. The study area (Khatanga region, Krasnoyarsk territory, Russia) is located in the Siberian Sub-arctic where Larixis the sole forest-line forming tree taxon. Pollen spectra from two different sedimentary environments, namely terrestrial mosses (n=16) and lakes (n=15, median radius ~100 m) and their surrounding vegetation were investigated to extract PPEs. Our results indicate some differences in pollen spectra between moss and lake pollen. Larix and Cyperaceae for example obtained higher representation in the lacustrine than in terrestrial moss samples. This highlights that in calibration studies modern and fossil dataset should be of similar sedimentary origin. The results of the Extended R-Value model were applied to assess the relevant source area of pollen (RSAP) and to calculate the PPEs for both datasets. As expected, the RSAP of the moss samples was very small (about 10 m) compared to the lacustrine samples (about 25 km). Calculation of PPEs for the six most common taxa yielded generally similar results for both datasets. Relative to Poaceae (reference taxon, PPE=1) Betula nana-type (PPEmoss: 1.8, PPElake: 1.8) and Alnusfruticosa-type (PPEmoss: 6.4, PPElake: 2.9) were overrepresented while Cyperaceae (PPEmoss: 0.5, PPElake: 0.1), Ericaceae (PPEmoss: 0.3, PPElake <0.01), Salix (PPEmoss: 0.03, PPElake <0.01) and Larix (PPEmoss <0.01, PPElake: 0.2) were under-represented in the pollen spectra compared to the vegetation in the RSAP. The estimation for the dominant tree in the region, Larixgmelinii, is the first published result for this species, but need to be considered very preliminary. The inferred sequence from over- to under-representation is mostly consistent with results from Europe; however, still the absolute values show some differences. Gathering vegetation data was limited by flowering season and low resolute satellite imagery and accessibility of the remote location of our study area. Therefore, our estimate may serve as first reference to strengthen future vegetation reconstructions in this climate-sensitive region.
Resumo:
Fifty samples of Roman time soil preserved under the thick ash layer of the A.D.79 eruption of Mt Vesuvius were studied by pollen analysis: 33 samples from a former vineyard surrounding a Villa Rustica at Boscoreale (excavation site 40 x 50 m), 13 samples taken along the 60 m long swimming pool in the sculpture garden of the Villa of Poppaea at Oplontis, and four samples from the formal garden (12.4 x 17.5 m) of the House of the Gold Bracelet in Pompeii. To avoid contamination with modern pollen all samples were taken immediately after uncovering a new portion of the A.D. 79 soil. For comparison also samples of modern Italian soils were studied. Using standard methods for pollen preparation the pollen content of 15 of the archaeological samples proved to be too little to reach a pollen sum of more than 100 grains. The pollen spectra of these samples are not shown in the pollen tables. (Flotation with a sodium tungstate solution, Na2WO4, D = 2.05, following treatment with HCl and NaOH would probably have given a somewhat better result. This method was, however, not available as too expensive at that time.) Although the archaeological samples were taken a few meters apart their pollen values differ very much from one sample to the other. E.g., at Boscoreale (SW quarter). the pollen values of Pinus range from 1.5 to 54.5% resp. from 1 to 244 pine pollen grains per 1 gram of soil, the extremes even found under pine trees. Vitis pollen was present in 7 of the 11 vineyard samples from Boscoreale (NE quarter) only. Although a maximum of 21.7% is reached, the values of Vitis are mostly below 1.5%. Even the values of common weeds differ very much, not only at Boscoreale, but also at the other two sites. The pollen concentration values show similar variations: 3 to 3053 grains and spores were found in 1 g of soil. The mean value (290) is much less than the number of pollen grains, which would fall on 1 cm2 of soil surface during one year. In contrast, the pollen and spore concentrations of the recent soil samples, treated in exactly the same manner, range from 9313 to almost 80000 grains per 1 g of soil. Evidently most of the Roman time pollen has disappeared since its deposition, the reasons not being clear. Not even species which are known to have been cultivated in the garden of Oplontis, like Citrus and Nerium, plant species with easily distinguishable pollen grains, could be traced by pollen analysis. The loss of most of the pollen grains originally contained in the soil prohibits any detailed interpretation of the Pompeian pollen data. The pollen counts merely name plant species which grew in the region, but not necessarily on the excavated plots.
Resumo:
A detailed dinoflagellate cyst investigation of the almost continuous Middle Miocene through Pliocene of Ocean Drilling Program Hole 907A in the Iceland Sea has been conducted at 100-kyr resolution. The investigated section is well constrained by magnetostratigraphy, providing for the first time an independent temporal control on a succession of northern high-latitude dinoflagellate cyst bioevents. Based on the highest/lowest occurrences (HO/LO) and highest common occurrence (HCO) of 20 dinoflagellate cyst taxa and one acritarch species, 26 bioevents have been defined and compared with those recorded at selected DSDP, ODP, and IODP sites from the North Atlantic and contiguous seas, and in outcrops and boreholes from the onshore and offshore eastern U.S.A., and the North Sea and Mediterranean basins. Comparisons reveal near-synchronous HOs of the dinoflagellate cysts Batiacasphaera micropapillata (3.8-3.4 Ma, mid-Pliocene) and Reticulatosphaera actinocoronata (4.8-4.2 Ma, Lower Pliocene) across the Nordic Seas and North Atlantic, highlighting their value on a supraregional scale. This probably applies also to Hystrichosphaeropsis obscura (upper Tortonian), when excluding ODP Hole 907A where its sporadic upper stratigraphic range presumably relates to cooling in the early Tortonian. Over a broader time span within the upper Tortonian, the HO of Operculodinium piaseckii likely also permits correlation across the Nordic Seas and North Atlantic, and the HO of Labyrinthodinium truncatum appears useful in the Labrador and Nordic Seas. Biostratigraphic markers useful for regional rather than supraregional correlation are the HOs of Batiacasphaera hirsuta (c. 8.4 Ma, upper Tortonian) and Unipontidinium aquaeductus (c. 13.6-13.9 Ma, upper Langhian), the HCO of the acritarch Decahedrella martinheadii (c. 6.7-6.3 Ma, Messinian), and possibly the LO of Cerebrocysta irregulare sp. nov. (c. 13.8 Ma, uppermost Langhian) across the Nordic Seas. Since Habibacysta tectata, B. micropapillata, R. actinocoronata and D. martinheadii have been observed in the Arctic Ocean, they are potentially useful for high latitude correlations in the polar domain. The LOs of Habibacysta tectata and Unipontidinium aquaeductus suggest a mid- to late Langhian age (15.1-13.7 Ma) for deposits at the base of Hole 907A, thus providing new constraints on the age of basalts at the base of ODP Hole 907A. The stratigraphically important dinoflagellate cysts Cerebrocysta irregulare sp. nov., and Impagidinium elongatum sp. nov. are formally described.