10 resultados para Aleph Analytics
em Publishing Network for Geoscientific
Resumo:
We conducted a six-week investigation of the sea ice inorganic carbon system during the winter-spring transition in the Canadian Arctic Archipelago. Samples for the determination of sea ice geochemistry were collected in conjunction with physical and biological parameters as part of the 2010 Arctic-ICE (Arctic - Ice-Covered Ecosystem in a Rapidly Changing Environment) program, a sea ice-based process study in Resolute Passage, Nunavut. The goal of Arctic-ICE was to determine the physical-biological processes controlling the timing of primary production in Arctic landfast sea ice and to better understand the influence of these processes on the drawdown and release of climatically active gases. The field study was conducted from 1 May to 21 June, 2010.
Resumo:
The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set provides continuous measurements of partial pressure of carbon dioxide (pCO2), using a ProOceanus CO2-Pro instrument mounted on the flowthrough system. This automatic sensor is fitted with an equilibrator made of gas permeable silicone membrane and an internal detection loop with a non-dispersive infrared detector of PPSystems SBA-4 CO2 analyzer. A zero-CO2 baseline is provided for the subsequent measurements circulating the internal gas through a CO2 absorption chamber containing soda lime or Ascarite. The frequency of this automatic zero point calibration was set to be 24 hours. All data recorded during zeroing processes were discarded with the 15-minute data after each calibration. The output of CO2-Pro is the mole fraction of CO2 in the measured water and the pCO2 is obtained using the measured total pressure of the internal wet gas. The fugacity of CO2 (fCO2) in the surface seawater, whose difference with the atmospheric CO2 fugacity is proportional to the air-sea CO2 fluxes, is obtained by correcting the pCO2 for non-ideal CO2 gas concentration according to Weiss (1974). The fCO2 computed using CO2-Pro measurements was corrected to the sea surface condition by considering the temperature effect on fCO2 (Takahashi et al., 1993). The surface seawater observations that were initially estimated with a 15 seconds frequency were averaged every 5-min cycle. The performance of CO2-Pro was adjusted by comparing the sensor outputs against the thermodynamic carbonate calculation of pCO2 using the carbonic system constants of Millero et al. (2006) from the determinations of total inorganic carbon (CT ) and total alkalinity (AT ) in discrete samples collected at sea surface. AT was determined using an automated open cell potentiometric titration (Haraldsson et al. 1997). CT was determined with an automated coulometric titration (Johnson et al. 1985; 1987), using the MIDSOMMA system (Mintrop, 2005). fCO2 data are flagged according to the WOCE guidelines following Pierrot et al. (2009) identifying recommended values and questionable measurements giving additional information about the reasons of the questionability.
Resumo:
Visual cluster analysis provides valuable tools that help analysts to understand large data sets in terms of representative clusters and relationships thereof. Often, the found clusters are to be understood in context of belonging categorical, numerical or textual metadata which are given for the data elements. While often not part of the clustering process, such metadata play an important role and need to be considered during the interactive cluster exploration process. Traditionally, linked-views allow to relate (or loosely speaking: correlate) clusters with metadata or other properties of the underlying cluster data. Manually inspecting the distribution of metadata for each cluster in a linked-view approach is tedious, specially for large data sets, where a large search problem arises. Fully interactive search for potentially useful or interesting cluster to metadata relationships may constitute a cumbersome and long process. To remedy this problem, we propose a novel approach for guiding users in discovering interesting relationships between clusters and associated metadata. Its goal is to guide the analyst through the potentially huge search space. We focus in our work on metadata of categorical type, which can be summarized for a cluster in form of a histogram. We start from a given visual cluster representation, and compute certain measures of interestingness defined on the distribution of metadata categories for the clusters. These measures are used to automatically score and rank the clusters for potential interestingness regarding the distribution of categorical metadata. Identified interesting relationships are highlighted in the visual cluster representation for easy inspection by the user. We present a system implementing an encompassing, yet extensible, set of interestingness scores for categorical metadata, which can also be extended to numerical metadata. Appropriate visual representations are provided for showing the visual correlations, as well as the calculated ranking scores. Focusing on clusters of time series data, we test our approach on a large real-world data set of time-oriented scientific research data, demonstrating how specific interesting views are automatically identified, supporting the analyst discovering interesting and visually understandable relationships.