14 resultados para Al2O3 Coatings
em Publishing Network for Geoscientific
Resumo:
A morphologically complex igneous basement was penetrated at Leg 125 Site 786 beneath approximately 100 m of Eocene-Pleistocene sediments at 31°52.45 'N, 141°13.59'E in a 3082-m water depth. The site is located on the forearc basement high (FBH) of the Izu-Bonin (Ogasawara) Arc. In the broadest terms, the sequence in Hole 786B consists of a basal sheeted dike complex, heavily mineralized in places, with overlying pillow lavas giving way to a complex and repeated sequence of interlayered volcanic breccias and lava flows with some thin sedimentary intervals. The sequence has been further cut by dikes or sills, particularly of high-Ca and intermediate-Ca boninite, and is locally strongly sheared by faulting. The whole basement has been covered with middle Eocene-early Pleistocene sediments. A monomict breccia forms the shallowest portion of Hole 786B and a polymict breccia having Mn-oxide-rich clast coatings and matrix forms the deepest part of Hole 786A (-100-160 mbsf). The basement is tectonized in some places, and a mineralized stockwork is present in the deepest part of Hole 786B. A wide variety of rock types form this basement, ranging from mafic to silicic in character and including high-, intermediate-, and low-Ca boninites, intermediate- and low-Ca bronzite andesites, andesite, dacite, and rhyolite groups. Intragroup and intergroup relationships are complicated in detail, and several different upper mantle source(s) probably were involved. A significant role for orthopyroxene-clinopyroxene-plagioclase fractionation is indicated in the mafic-intermediate groups, and the most probable complementary cumulates should be noritic gabbros. Many overall similarities but some subtle differences are noted between the igneous basement at Site 786 and the subaerial outcrops of the FBH to the south in the type boninite locality of Chichijima. Both suites were derived by hydrous melting of a relatively shallow, refractory (harzburgitic) upper mantle source. These Bonin forearc basement rocks are similar in many respects to those of Eocene-Oligocene age now forming the forearc of the Marianas at Leg 60 Site 458 and on Guam. In sharp distinction, the geochemistry of the Eocene-Pleistocene ash sequences overlying the Bonin FBH must have been derived from a very different upper mantle source, implying considerable across-strike differences in sub-arc mantle composition.
Resumo:
In order to determine geochemical compositions of Late Cenozoic Arctic seawater, oxide fractions were chemically separated from 15 samples of hand-picked ferromanganese micronodules (50-300 mu m). The success of the chemical separation is indicated by the fact that >97% of the Sr in the oxide fraction is seawater-derived. Rare-earth element (REE) abundances of the Arctic micronodule oxide fractions are much lower than those of bulk Fe-Mn nodules from other ocean basins of the world (e.g., 33 vs. 145 ppm Nd), but the Arctic oxides are enriched in Ce relative to Nd (Ce-N/Nd-N=2.2+/-0.5) and have convex-upward, shale-normalized REE patterns (Nd-N/Gd-N=0.61+/-0.06, Gd-N/Yb-N = 1.5+/-0.2, Nd-N/Yb-N = 0.9+/-0.2), typical of other hydrogenous and diagenetic marine Fe-Mn-oxides. Bulk sediment samples from the central Arctic Ocean have REE abundances and patterns that are characteristic of those of post-Archean shale. Non-detrital fractions (calcite + oxide coatings) of Recent Arctic foraminifera have REE abundances and patterns similar to those of Recent foraminifera from the Atlantic Ocean. Electron microprobe analyses (n=178) of transition elements in 29 Arctic Fe-Mn micronodules from five different stratigraphic intervals of Late Cenozoic sediment indicate that oxide accretion occurred as a result of hydrogenetic and diagenetic processes close to the sediment-seawater interface. Transition element ratios suggest that no oxide accretion occurred during transitions from oxic to suboxic diagenetic conditions. Only K is correlated with Si and Al, and ratios of these elements suggest that they are associated with illite or phillipsite. Ca and Mg are correlated with Mn, which indicates variable substitution of these elements from seawater into the manganate phase. The geochemical characteristics of Arctic Fe-Mn micronodules indicate that the REEs of the oxide fractions were ultimately derived from seawater. However, because of minute contributions of Sr from siliciclastic detritus during diagenesis or during the chemical leaching procedure, Sr isotope compositions of the oxide fractions cannot be used to trace temporal changes in the Sr-87/Sr-86 ratio of Arctic seawater or to improve the chronostratigraphy.
Resumo:
Several thin (1-10 cm) megascopic vitric tephras occur in the late Cenozoic calcareous oozes on Lord Howe Rise in the Tasman Sea and off eastern South Island, New Zealand. Of the 18 tephras analyzed 15 are silicic (75-78% SiO2) with abundant clear glass shards and a biotite ± hypersthene ± green hornblende ferromagnesian mineralogy. The Neogene silicic tephras were derived from the now-extinct Coromandel volcanic area in New Zealand, and the Quaternary ones from the presently active Central Volcanic Region of New Zealand. On the basis of glass chemistry and age, several of the Quaternary tephras are probably correlatives, and at least two can be matched to the major on-land Mt. Curl tephra (-0.25 m.y.). The occurrence of correlative silicic tephras both northwest and southeast of New Zealand may result from particularly violent eruptions, the ash below and above an altitude of -20 km being dispersed in opposite directions toward the Pacific Ocean and Tasman Sea, respectively. Ash drifting eastward into the southeasterly trade wind belt off northeastern New Zealand could also be carried into the central and northern Tasman Sea. Three megascopic tephras consist of altered basic shards and common labradorite crystals. They record Neogene explosive basaltic to andesitic activity from nearby ocean island or ridge sources in the Ontong-Java Plateau and Vanuatu regions. The megascopic tephras are a very incomplete and biased record of late Cenozoic explosive volcanism in the southwest Pacific because the innumerable, thin, green argillaceous layers in the cores (Gardner et al., this volume) probably represent devitrified intermediate to basic tephras derived mainly from oceanic arc volcanism along the Pacific/Australia plate boundary. In contrast to the New Zealand-derived silicic glass shards, the preservation potential of these more basic shards in Leg 90 calcareous sediments was low.
Resumo:
Manganese nodules occurring within marine sediments of presumably Upper Miocene-Lower Pliocene age from cores obtained by the Argentine oceanographic vessel ARA Islas Orcadas in 1977 on the Malvinas (Falkland) Plateau and neighbouring Scotia Sea were studied with the aim of comparing them with other fossil nodules found on the mainland of Argentina that were also ascribed to the marine environment. After optical mineralogical, chemical, X-ray and trace element analysis, the studied "nodules" proved to be actually wacke clasts cemented by manganese oxides with a high Fe/Mn ratio corresponding to a continental environment. The studied "nodules" thus differ from the Argentine mainland nodules and are supposed to have been transported from continental environments and then deposited in the marine realms. The wacke clasts became then nuclei for the deposition of the marine manganese oxides of the coatings. The proportion of trace elements, which is high, suggests the growth of the nodules in the marine environment.