3 resultados para Air Entry Value

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vegetation changes, such as shrub encroachment and wetland expansion, have been observed in many Arctic tundra regions. These changes feed back to permafrost and climate. Permafrost can be protected by soil shading through vegetation as it reduces the amount of solar energy available for thawing. Regional climate can be affected by a reduction in surface albedo as more energy is available for atmospheric and soil heating. Here, we compared the shortwave radiation budget of two common Arctic tundra vegetation types dominated by dwarf shrubs (Betula nana) and wet sedges (Eriophorum angustifolium) in North-East Siberia. We measured time series of the shortwave and longwave radiation budget above the canopy and transmitted radiation below the canopy. Additionally, we quantified soil temperature and heat flux as well as active layer thickness. The mean growing season albedo of dwarf shrubs was 0.15 ± 0.01, for sedges it was higher (0.17 ± 0.02). Dwarf shrub transmittance was 0.36 ± 0.07 on average, and sedge transmittance was 0.28 ± 0.08. The standing dead leaves contributed strongly to the soil shading of wet sedges. Despite a lower albedo and less soil shading, the soil below dwarf shrubs conducted less heat resulting in a 17 cm shallower active layer as compared to sedges. This result was supported by additional, spatially distributed measurements of both vegetation types. Clouds were a major influencing factor for albedo and transmittance, particularly in sedge vegetation. Cloud cover reduced the albedo by 0.01 in dwarf shrubs and by 0.03 in sedges, while transmittance was increased by 0.08 and 0.10 in dwarf shrubs and sedges, respectively. Our results suggest that the observed deeper active layer below wet sedges is not primarily a result of the summer canopy radiation budget. Soil properties, such as soil albedo, moisture, and thermal conductivity, may be more influential, at least in our comparison between dwarf shrub vegetation on relatively dry patches and sedge vegetation with higher soil moisture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research vessel and supply icebreaker POLARSTERN is the flagship of the Alfred-Wegener-Institut in Bremerhaven (Germany) and one of the infrastructural pillars of German Antarctic research. Since its commissioning in 1982, POLARSTERN has conducted 30 campaigns to Antarctica (157 legs, mostly austral summer), and 29 to the Arctic (94 legs, northern summer). Usually, POLARSTERN is more than 300 days per year in operation and crosses the Atlantic Ocean in a meridional section twice a year. The first radiosonde on POLARSTERN was released on the 29th of December 1982, two days after POLARSTERN started on its maiden voyage to the Antarctic. And these daily soundings have continued up to the present. Due to the fact that POLARSTERN has reliably and regularly been providing upper air observations from data sparse regions (oceans and polar regions), the radiosonde data are of special value for researchers and weather forecast services alike. In the course of 30 years (1982-12-29 to 2012-11-25) a total of 12378 radiosonde balloons were started on POLARSTERN. All radiosonde data can now be found here. Each dataset contains the directly measured parameters air temperature, relative humidity and air pressure, and the derived altitude, wind direction and wind speed. 432 datasets additionally contain ozone measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dominant model of atmospheric circulation posits that hot air rises, creating horizontal winds. A second major driver has recently been proposed by Makarieva and Gorshkov in their biotic pump theory (BPT), which suggests that evapotranspiration from natural closed-canopy forests causes intense condensation, and hence winds from ocean to land. Critics of the BPT argue that air movement to fill the partial vacuum caused by condensation is always isotropic, and therefore causes no net air movement (Bunyard, 2015, hdl:11232/397). This paper explores the physics of water condensation under mild atmospheric conditions, within a purpose-designed square-section 4.8 m-tall closed-system structure. Two enclosed vertical columns are connected at top and bottom by two horizontal tunnels, around which 19.5 m**3 of atmospheric air can circulate freely, allowing rotary airflows in either direction. This air can be cooled and/or warmed by refrigeration pipes and a heating mat, and changes in airflow, temperature, humidity and barometric pressure measured in real time. The study investigates whether the "hot-air-rises" or an implosive condensation model can better explain the results of more than 100 experiments. The data show a highly significant correlation (R2 >0.96, p value <0.001) between observed airflows and partial pressure changes from condensation. While the kinetic energy of the refrigerated air falls short of that required in bringing about observed airflows by a factor of at least 30, less than a tenth of the potential kinetic energy from condensation is shown to be sufficient. The assumption that condensation of water vapour is always isotropic is therefore incorrect. Condensation can be anisotropic, and in the laboratory does cause sustained airflow.