12 resultados para Agriculture--Australia--Maps

em Publishing Network for Geoscientific


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In 2014, UniDive (The University of Queensland Underwater Club) conducted an ecological assessment of the Point Lookout Dive sites for comparison with similar surveys conducted in 2001 - the PLEA project. Involvement in the project was voluntary. Members of UniDive who were marine experts conducted training for other club members who had no, or limited, experience in identifying marine organisms and mapping habitats. Since the 2001 detailed baseline study, no similar seasonal survey has been conducted. The 2014 data is particularly important given that numerous changes have taken place in relation to the management of, and potential impacts on, these reef sites. In 2009, Moreton Bay Marine Park was re-zoned, and Flat Rock was converted to a marine national park zone (Green zone) with no fishing or anchoring. In 2012, four permanent moorings were installed at Flat Rock. Additionally, the entire area was exposed to the potential effects of the 2011 and 2013 Queensland floods, including flood plumes which carried large quantities of sediment into Moreton Bay and surrounding waters. The population of South East Queensland has increased from 2.49 million in 2001 to 3.18 million in 2011 (BITRE, 2013). This rapidly expanding coastal population has increased the frequency and intensity of both commercial and recreational activities around Point Lookout dive sites (EPA 2008). Habitats were mapped using a combination of towed GPS photo transects, aerial photography and expert knowledge. This data provides georeferenced information regarding the major features of each of the Point Lookout Dive Sites.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Long term global archives of high-moderate spatial resolution, multi-spectral satellite imagery are now readily accessible, but are not being fully utilised by management agencies due to the lack of appropriate methods to consistently produce accurate and timely management ready information. This work developed an object-based remote sensing approach to map land cover and seagrass distribution in an Australian coastal environment for a 38 year Landsat image time-series archive (1972-2010). Landsat Multi-Spectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) imagery were used without in situ field data input (but still using field knowledge) to produce land and seagrass cover maps every year data were available, resulting in over 60 map products over the 38 year archive. Land cover was mapped annually using vegetation, bare ground, urban and agricultural classes. Seagrass distribution was also mapped annually, and in some years monthly, via horizontal projected foliage cover classes, sand and deep water. Land cover products were validated using aerial photography and seagrass maps were validated with field survey data, producing several measures of accuracy. An average overall accuracy of 65% and 80% was reported for seagrass and land cover products respectively, which is consistent with other studies in the area. This study is the first to show moderate spatial resolution, long term annual changes in land cover and seagrass in an Australian environment, created without the use of in situ data; and only one of a few similar studies globally. The land cover products identify several long term trends; such as significant increases in South East Queensland's urban density and extent, vegetation clearing in rural and rural-residential areas, and inter-annual variation in dry vegetation types in western South East Queensland. The seagrass cover products show that there has been a minimal overall change in seagrass extent, but that seagrass cover level distribution is extremely dynamic; evidenced by large scale migrations of higher seagrass cover levels and several sudden and significant changes in cover level. These mapping products will allow management agencies to build a baseline assessment of their resources, understand past changes and help inform implementation and planning of management policy to address potential future changes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Surveying habitats critical to the survival of grey nurse sharks in South-East Queensland has mapped critical habitats, gathered species inventories and developed protocols for ecological monitoring of critical habitats in southern Queensland. This information has assisted stakeholders with habitat definition and effective management. In 2002 members of UniDive applied successfully for World Wide Fund for Nature, Threatened Species Network funds to map the critical Grey Nurse Shark Habitats in south east Queensland. UniDive members used the funding to survey, from the boats of local dive operators, Wolf Rock at Double Island Point, Gotham, Cherub's Cave, Henderson's Rock and China Wall at North Moreton and Flat Rock at Point Look Out during 2002 and 2003. These sites are situated along the south east Queensland coast and are known to be key Grey Nurse Shark aggregation sites. During the project UniDive members were trained in mapping and survey techniques that include identification of fish, invertebrates and substrate types. Training was conducted by experts from the University of Queensland (Centre of Marine Studies, Biophysical Remote Sensing) and the Queensland Parks and Wildlife Service who are also UniDive members. The monitoring methods (see methods) are based upon results of the UniDive Coastcare project from 2002, the international established Reef Check program and research conducted by Biophysical Remote Sensing and the Centre of Marine Studies. Habitats were mapped using a combination of towed GPS photo transects, aerial photography, bathymetry surveys and expert knowledge. This data provides georeferenced information regarding the major features of each of Sites mapped including Wolf Rock

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spatial and temporal dynamics of seagrasses have been well studied at the leaf to patch scales, however, the link to large spatial extent landscape and population dynamics is still unresolved in seagrass ecology. Traditional remote sensing approaches have lacked the temporal resolution and consistency to appropriately address this issue. This study uses two high temporal resolution time-series of thematic seagrass cover maps to examine the spatial and temporal dynamics of seagrass at both an inter- and intra-annual time scales, one of the first globally to do so at this scale. Previous work by the authors developed an object-based approach to map seagrass cover level distribution from a long term archive of Landsat TM and ETM+ images on the Eastern Banks (~200 km**2), Moreton Bay, Australia. In this work a range of trend and time-series analysis methods are demonstrated for a time-series of 23 annual maps from 1988 to 2010 and a time-series of 16 monthly maps during 2008-2010. Significant new insight was presented regarding the inter- and intra-annual dynamics of seagrass persistence over time, seagrass cover level variability, seagrass cover level trajectory, and change in area of seagrass and cover levels over time. Overall we found that there was no significant decline in total seagrass area on the Eastern Banks, but there was a significant decline in seagrass cover level condition. A case study of two smaller communities within the Eastern Banks that experienced a decline in both overall seagrass area and condition are examined in detail, highlighting possible differences in environmental and process drivers. We demonstrate how trend and time-series analysis enabled seagrass distribution to be appropriately assessed in context of its spatial and temporal history and provides the ability to not only quantify change, but also describe the type of change. We also demonstrate the potential use of time-series analysis products to investigate seagrass growth and decline as well as the processes that drive it. This study demonstrates clear benefits over traditional seagrass mapping and monitoring approaches, and provides a proof of concept for the use of trend and time-series analysis of remotely sensed seagrass products to benefit current endeavours in seagrass ecology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: Greater understanding of the processes underlying biological invasions is required to determine and predict invasion risk. Two subspecies of olive (Olea europaea subsp. europaea and Olea europaea subsp. cuspidata) have been introduced into Australia from the Mediterranean Basin and southern Africa during the 19th century. Our aim was to determine to what extent the native environmental niches of these two olive subspecies explain the current spatial segregation of the subspecies in their non-native range. We also assessed whether niche shifts had occurred in the non-native range, and examined whether invasion was associated with increased or decreased occupancy of niche space in the non-native range relative to the native range. Location: South-eastern Australia, Mediterranean Basin and southern Africa. Methods: Ecological niche models (ENMs) were used to quantify the similarity of native and non-native realized niches. Niche shifts were characterized by the relative contribution of niche expansion, stability and contraction based on the relative occupancy of environmental space by the native and non-native populations. Results: Native ENMs indicated that the spatial segregation of the two subspecies in their non-native range was partly determined by differences in their native niches. However, we found that environmentally suitable niches were less occupied in the non-native range relative to the native range, indicating that niche shifts had occurred through a contraction of the native niches after invasion, for both subspecies. Main conclusions: The mapping of environmental factors associated with niche expansion, stability or contraction allowed us to identify areas of greater invasion risk. This study provides an example of successful invasions that are associated with niche shifts, illustrating that introduced plant species are sometimes readily able to establish in novel environments. In these situations the assumption of niche stasis during invasion, which is implicitly assumed by ENMs, may be unreasonable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple method for efficient inversion of arbitrary radiative transfer models for image analysis is presented. The method operates by representing the shape of the function that maps model parameters to spectral reflectance by an adaptive look-up tree (ALUT) that evenly distributes the discretization error of tabulated reflectances in spectral space. A post-processing step organizes the data into a binary space partitioning tree that facilitates an efficient inversion search algorithm. In an example shallow water remote sensing application, the method performs faster than an implementation of previously published methodology and has the same accuracy in bathymetric retrievals. The method has no user configuration parameters requiring expert knowledge and minimizes the number of forward model runs required, making it highly suitable for routine operational implementation of image analysis methods. For the research community, straightforward and robust inversion allows research to focus on improving the radiative transfer models themselves without the added complication of devising an inversion strategy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Approximately 18,400 km**2 of seagrass habitat has been mapped within the coastal waters (<15 m) of Queensland (Australia) between November 1984 and June 2010. The total seagrass meadow distribution was calculated by merging maps from 115 separate mapping surveys (varying locations and dates). Due to tropical seagrass dynamism, meadow distribution can change seasonally and between years, and as a consequence, the composite represents the maximum area of seabed where seagrass has been observed/recorded. Mapping survey methodologies followed standardised global seagrass research methods (McKenzie et al. 2001) where the presence of seagrass was determined from in situ visual assessment of the seabed by either divers or drop cameras at GPS marked positions. Seagrass meadow boundaries were determined based on the positions of survey sites and the presence of seagrass, coupled with depth contours and remote sensing (e.g. aerial photography) where available. The merged meadow boundary accuracy was dependent on the original survey maps and varied from 10-100 m. The resulting composite seagrass distribution was saved as an ArcMap polygon shapefile, and projected to Geocentric Datum of Australia GDA94.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spatial and temporal dynamics of seagrasses have been studied from the leaf to patch (100 m**2) scales. However, landscape scale (> 100 km**2) seagrass population dynamics are unresolved in seagrass ecology. Previous remote sensing approaches have lacked the temporal or spatial resolution, or ecologically appropriate mapping, to fully address this issue. This paper presents a robust, semi-automated object-based image analysis approach for mapping dominant seagrass species, percentage cover and above ground biomass using a time series of field data and coincident high spatial resolution satellite imagery. The study area was a 142 km**2 shallow, clear water seagrass habitat (the Eastern Banks, Moreton Bay, Australia). Nine data sets acquired between 2004 and 2013 were used to create seagrass species and percentage cover maps through the integration of seagrass photo transect field data, and atmospherically and geometrically corrected high spatial resolution satellite image data (WorldView-2, IKONOS and Quickbird-2) using an object based image analysis approach. Biomass maps were derived using empirical models trained with in-situ above ground biomass data per seagrass species. Maps and summary plots identified inter- and intra-annual variation of seagrass species composition, percentage cover level and above ground biomass. The methods provide a rigorous approach for field and image data collection and pre-processing, a semi-automated approach to extract seagrass species and cover maps and assess accuracy, and the subsequent empirical modelling of seagrass biomass. The resultant maps provide a fundamental data set for understanding landscape scale seagrass dynamics in a shallow water environment. Our findings provide proof of concept for the use of time-series analysis of remotely sensed seagrass products for use in seagrass ecology and management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes seagrass species and percentage cover point-based field data sets derived from georeferenced photo transects. Annually or biannually over a ten year period (2004-2015) data sets were collected using 30-50 transects, 500-800 m in length distributed across a 142 km**2 shallow, clear water seagrass habitat, the Eastern Banks, Moreton Bay, Australia. Each of the eight data sets include seagrass property information derived from approximately 3000 georeferenced, downward looking photographs captured at 2-4 m intervals along the transects. Photographs were manually interpreted to estimate seagrass species composition and percentage cover (Coral Point Count excel; CPCe). Understanding seagrass biology, ecology and dynamics for scientific and management purposes requires point-based data on species composition and cover. This data set, and the methods used to derive it are a globally unique example for seagrass ecological applications. It provides the basis for multiple further studies at this site, regional to global comparative studies, and, for the design of similar monitoring programs elsewhere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In addition to enhance agricultural productivity, synthetic nitrogen (N) and phosphorous (P) fertilizer application in croplands dramatically altered global nutrient budget, water quality, greenhouse gas balance, and their feedbacks to the climate system. However, due to the lack of geospatial fertilizer input data, current Earth system/land surface modeling studies have to ignore or use over-simplified data (e.g., static, spatially uniform fertilizer use) to characterize agricultural N and P input over decadal or century-long period. We therefore develop a global time-series gridded data of annual synthetic N and P fertilizer use rate in croplands, matched with HYDE 3,2 historical land use maps, at a resolution of 0.5º latitude by longitude during 1900-2013. Our data indicate N and P fertilizer use rates increased by approximately 8 times and 3 times, respectively, since the year 1961, when IFA (International Fertilizer Industry Association) and FAO (Food and Agricultural Organization) survey of country-level fertilizer input were available. Considering cropland expansion, increase of total fertilizer consumption amount is even larger. Hotspots of agricultural N fertilizer use shifted from the U.S. and Western Europe in the 1960s to East Asia in the early 21st century. P fertilizer input show the similar pattern with additional hotspot in Brazil. We find a global increase of fertilizer N/P ratio by 0.8 g N/g P per decade (p< 0.05) during 1961-2013, which may have important global implication of human impacts on agroecosystem functions in the long run. Our data can serve as one of critical input drivers for regional and global assessment on agricultural productivity, crop yield, agriculture-derived greenhouse gas balance, global nutrient budget, land-to-aquatic nutrient loss, and ecosystem feedback to the climate system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coral reef maps at various spatial scales and extents are needed for mapping, monitoring, modelling, and management of these environments. High spatial resolution satellite imagery, pixel <10 m, integrated with field survey data and processed with various mapping approaches, can provide these maps. These approaches have been accurately applied to single reefs (10-100 km**2), covering one high spatial resolution scene from which a single thematic layer (e.g. benthic community) is mapped. This article demonstrates how a hierarchical mapping approach can be applied to coral reefs from individual reef to reef-system scales (10-1000 km**2) using object-based image classification of high spatial resolution images guided by ecological and geomorphological principles. The approach is demonstrated for three individual reefs (10-35 km**2) in Australia, Fiji, and Palau; and for three complex reef systems (300-600 km**2) one in the Solomon Islands and two in Fiji. Archived high spatial resolution images were pre-processed and mosaics were created for the reef systems. Georeferenced benthic photo transect surveys were used to acquire cover information. Field and image data were integrated using an object-based image analysis approach that resulted in a hierarchically structured classification. Objects were assigned class labels based on the dominant benthic cover type, or location-relevant ecological and geomorphological principles, or a combination thereof. This generated a hierarchical sequence of reef maps with an increasing complexity in benthic thematic information that included: 'reef', 'reef type', 'geomorphic zone', and 'benthic community'. The overall accuracy of the 'geomorphic zone' classification for each of the six study sites was 76-82% using 6-10 mapping categories. For 'benthic community' classification, the overall accuracy was 52-75% with individual reefs having 14-17 categories and reef systems 20-30 categories. We show that an object-based classification of high spatial resolution imagery, guided by field data and ecological and geomorphological principles, can produce consistent, accurate benthic maps at four hierarchical spatial scales for coral reefs of various sizes and complexities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distribution, abundance, behaviour, and morphology of marine species is affected by spatial variability in the wave environment. Maps of wave metrics (e.g. significant wave height Hs, peak energy wave period Tp, and benthic wave orbital velocity URMS) are therefore useful for predictive ecological models of marine species and ecosystems. A number of techniques are available to generate maps of wave metrics, with varying levels of complexity in terms of input data requirements, operator knowledge, and computation time. Relatively simple "fetch-based" models are generated using geographic information system (GIS) layers of bathymetry and dominant wind speed and direction. More complex, but computationally expensive, "process-based" models are generated using numerical models such as the Simulating Waves Nearshore (SWAN) model. We generated maps of wave metrics based on both fetch-based and process-based models and asked whether predictive performance in models of benthic marine habitats differed. Predictive models of seagrass distribution for Moreton Bay, Southeast Queensland, and Lizard Island, Great Barrier Reef, Australia, were generated using maps based on each type of wave model. For Lizard Island, performance of the process-based wave maps was significantly better for describing the presence of seagrass, based on Hs, Tp, and URMS. Conversely, for the predictive model of seagrass in Moreton Bay, based on benthic light availability and Hs, there was no difference in performance using the maps of the different wave metrics. For predictive models where wave metrics are the dominant factor determining ecological processes it is recommended that process-based models be used. Our results suggest that for models where wave metrics provide secondarily useful information, either fetch- or process-based models may be equally useful.