4 resultados para Agricultural and Biological Sciences (miscellaneous)
em Publishing Network for Geoscientific
Resumo:
The combustion of fossil fuels has enriched levels of CO2 in the world's oceans and decreased ocean pH. Although the continuation of these processes may alter the growth, survival, and diversity of marine organisms that synthesize CaCO3shells, the effects of ocean acidification since the dawn of the industrial revolution are not clear. Here we present experiments that examined the effects of the ocean's past, present, and future (21st and 22nd centuries) CO2concentrations on the growth, survival, and condition of larvae of two species of commercially and ecologically valuable bivalve shellfish (Mercenaria mercenariaand Argopecten irradians). Larvae grown under near preindustrial CO2concentrations (250 ppm) displayed significantly faster growth and metamorphosis as well as higher survival and lipid accumulation rates compared with individuals reared under modern day CO2 levels. Bivalves grown under near preindustrial CO2 levels displayed thicker, more robust shells than individuals grown at present CO2 concentrations, whereas bivalves exposed to CO2 levels expected later this century had shells that were malformed and eroded. These results suggest that the ocean acidification that has occurred during the past two centuries may be inhibiting the development and survival of larval shellfish and contributing to global declines of some bivalve populations.
Resumo:
The persistence of most coastal marine species depends on larvae finding suitable adult habitat at the end of an offshore dispersive stage that can last weeks or months. We tested the effects that ocean acidification from elevated levels of atmospheric carbon dioxide (CO2) could have on the ability of larvae to detect olfactory cues from adult habitats. Larval clownfish reared in control seawater (pH 8.15) discriminated between a range of cues that could help them locate reef habitat and suitable settlement sites. This discriminatory ability was disrupted when larvae were reared in conditions simulating CO2-induced ocean acidification. Larvae became strongly attracted to olfactory stimuli they normally avoided when reared at levels of ocean pH that could occur ca. 2100 (pH 7.8) and they no longer responded to any olfactory cues when reared at pH levels (pH 7.6) that might be attained later next century on a business-as-usual carbon-dioxide emissions trajectory. If acidification continues unabated, the impairment of sensory ability will reduce population sustainability of many marine species, with potentially profound consequences for marine diversity.
Resumo:
Pingualuk Lake fills a deep crater in the Parc National des Pingualuit on the Ungava Peninsula (Nunavik, Canada) and is isolated from nearby surface waters. The main objectives of this study were to determine and compare the concentrations of two atmospherically derived contaminants, mercury and perfluorinated chemicals (PFCs), in the lake water column and fish of Pingualuk Lake and to assess the physical and biological factors influencing contaminant concentrations. Mercury concentrations in arctic char muscle tissue were comparable to those of char in other Arctic lakes, while the total amount of PFCs was below reported levels for remote lakes in the Arctic and elsewhere. Stable isotope and stomach content analyses were made to investigate the feeding ecology of the Pingualuk Lake arctic char population and indicated the possibility of multiple feeding groups. Genetics characteristics (MH and mtDNA) of fish from Pingualuk Lake revealed that this population is likely distinct from that of nearby Laflamme Lake. However, both arctic char populations exhibit differential variation of their allele families. Physical characteristics determined for Lake Pingualuk revealed that the water column was inversely stratified beneath the ice and extremely transparent to visible and ultraviolet radiation. The highest mercury concentrations (3- 6 pg/mL THg) occurred just beneath the ice surface in each lake. Pingualuk Lake, given its near pristine state and exceptional limnological features, may serve as a most valuable reference ecosystem for monitoring environmental stressors, such as contaminants, in the Arctic.
Resumo:
This archive consists of the hydrographic data collected on Cruise 82-002 of C.S.S. Hudson, April 11 to May 2, 1982. 78 stations were occupied on a line running near 48°N from the mouth of the English Channel to the Grand Banks of Newfoundland. Pressure, temperature and salinity were measured by a Guildline digital CTP system. Salinity, dissolved oxygen, silicate, nitrate and phosphate were measured from water samples collected on the CTP upcasts. CTP and discrete bottle data and associated derived parameters are tabulated at standard levels. This is the digital version of the printed report (of 1989, see further details), published in 2006 with the information system Pangaea.