2 resultados para Agent-Based Model

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The copepod Calanus finmarchicus is the dominant species of the meso-zooplankton in the Norwegian Sea, and constitutes an important link between the phytoplankton and the higher trophic levels in the Norwegian Sea food chain. An individualbased model for C. finmarchicus, based on super-individuals and evolving traits for behaviour, stages, etc., is two-way coupled to the NORWegian ECOlogical Model system (NORWECOM). One year of modelled C. finmarchicus spatial distribution, production and biomass are found to represent observations reasonably well. High C. finmarchicus abundance is found along the Norwegian shelf-break in the early summer, while the overwintering population is found along the slope and in the deeper Norwegian Sea basins. The timing of the spring bloom is generally later than in the observations. Annual Norwegian Sea production is found to be 29 million tonnes of carbon and a production to biomass (P/B) ratio of 4.3 emerges. Sensitivity tests show that the modelling system is robust to initial values of behavioural traits and with regards to the number of super-individuals simulated given that this is above about 50,000 individuals. Experiments with the model system indicate that it provides a valuable tool for studies of ecosystem responses to causative forces such as prey density or overwintering population size. For example, introducing C. finmarchicus food limitations reduces the stock dramatically, but on the other hand, a reduced stock may rebuild in one year under normal conditions. The NetCDF file contains model grid coordinates and bottom topography.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Siberian boreal forests are expected to expand northwards in the course of global warming. However, processes of the treeline ecotone transition, as well astiming and related climate feedbacks are still not understood. Here, we present 'Larix Vegetation Simulator' LAVESI, an individual-based spatially-explicit model that can simulate Larix gmelinii (RUPR.) RUPR. stand dynamics in an attempt to improve our understanding about past and future treeline movements under changing climates. The relevant processes (growth, seed production and dispersal, establishment and mortality) are incorporated and adjusted to observation data mainly gained from the literature. Results of a local sensitivity analysis support the robustness of the model's parameterization by giving relatively small sensitivity values. We tested the model by simulating tree stands under modern climate across the whole Taymyr Peninsula, north-central Siberia (c. 64-80° N; 92-119° E). We find tree densities similar to observed forests in the northern to mid-treeline areas, but densities are overestimated in the southern parts of the simulated region. Finally, from a temperature-forcing experiment, we detect that the responses of tree stands lag the hypothetical warming by several decades, until the end of 21st century. With our simulation experiments we demonstrate that the newly-developed model captures the dynamics of the Siberian latitudinal treeline.