966 resultados para Age, 14C AMS and ifrared stimulated luminescence (IRSL)
em Publishing Network for Geoscientific
Resumo:
Four seismic surveys and a stratigraphic record from southernmost Patagonia (Argentina) based on 51 AMS-14C dates obtained in the framework of ICDP expedition 5022 "Potrok Aike Maar Lake Sediment Archive Drilling Project" (PASADO) provide a database to compare the 106 m composite profile from the lake centre with piston cores from the littoral and outcrops in the catchment area. Based on event correlation using distinct volcanic ash layers with unique geochemical composition and optically stimulated luminescence (OSL) dates on feldspars, sediment records are firmly linked. This approach allows to match the sediment record with water levels during the past ca. 49 ka providing evidence for lake level variations. Reconstructed lake levels were 20 m higher than today during the last Glacial until the early Holocene. With the migration of the Southern Hemispheric Westerlies over this site the lake level dropped ca. 55 m for a period of two millennia. Thereupon the water balance was more positive again causing a stepwise rise of the lake level until the maximum was reached during the Little Ice Age with a subsequent lowering since the 20th century. We suggest that the mid- to late-Holocene lake level variation is caused by intensity changes of the Southern Hemispheric Westerlies.
Resumo:
Terrestrial permafrost archives along the Yukon Coastal Plain (northwest Canada) have recorded landscape development and environmental change since the Late Wisconsinan at the interface of unglaciated Beringia (i.e. Komakuk Beach) and the northwestern limit of the Laurentide Ice Sheet (i.e. Herschel Island). The objective of this paper is to compare the late glacial and Holocene landscape development on both sides of the former ice margin based on permafrost sequences and ground ice. Analyses at these sites involved a multi-proxy approach including: sedimentology, cryostratigraphy, palaeoecology of ostracods, stable water isotopes in ground ice, hydrochemistry, and AMS radiocarbon and infrared stimulated luminescence (IRSL) dating. AMS and IRSL age determinations yielded full glacial ages at Komakuk Beach that is the northeastern limit of ice-free Beringia. Herschel Island to the east marks the Late Wisconsinan limit of the northwest Laurentide Ice Sheet and is composed of ice-thrust sediments containing plant detritus as young as 16.2 cal ka BP that might provide a maximum age on ice arrival. Late Wisconsinan ice wedges with sediment-rich fillings on Herschel Island are depleted in heavy oxygen isotopes (mean d18O of -29.1 per mil); this, together with low d-excess values, indicates colder-than-modern winter temperatures and probably reduced snow depths. Grain-size distribution and fossil ostracod assemblages indicate that deglaciation of the Herschel Island ice-thrust moraine was accompanied by alluvial, proluvial, and eolian sedimentation on the adjacent unglaciated Yukon Coastal Plain until ~11 cal ka BP during a period of low glacio-eustatic sea level. The late glacial-Holocene transition was marked by higher-than-modern summer temperatures leading to permafrost degradation that began no later than 11.2 cal ka BP and caused a regional thaw unconformity. Cryostructures and ice wedges were truncated while organic matter was incorporated and soluble ions were leached in the thaw zone. Thermokarst activity led to the formation of ice-wedge casts and deposition of thermokarst lake sediments. These were subsequently covered by rapidly accumulating peat during the early Holocene Thermal Maximum. A rising permafrost table, reduced peat accumulation, and extensive ice-wedge growth resulted from climate cooling starting in the middle Holocene until the late 20th century. The reconstruction of palaeolandscape dynamics on the Yukon Coastal Plain and the eastern Beringian edge contributes to unraveling the linkages between ice sheet, ocean, and permafrost that have existed since the Late Wisconsinan.
Resumo:
An area of massive barite precipitations was studied at a tectonic horst in 1500 m water depth in the Derugin Basin, Sea of Okhotsk. Seafloor observations and dredge samples showed irregular, block- to column-shaped barite build-ups up to 10 m high which were scattered over the seafloor along an observation track 3.5 km long. High methane concentrations in the water column show that methane expulsion and probably carbonate precipitation is a recently active process. Small fields of chemoautotrophic clams (Calyptogena sp., Acharax sp.) at the seafloor provide additional evidence for active fluid venting. The white to yellow barites show a very porous and often layered internal fabric, and are typically covered by dark-brown Mn-rich sediment; electron microprobe spectroscopy measurements of barite sub-samples show a Ba substitution of up to 10.5 mol% of Sr. Rare idiomorphic pyrite crystals (~1%) in the barite fabric imply the presence of H2S. This was confirmed by clusters of living chemoautotrophic tube worms (1 mm in diameter) found in pores and channels within the barite. Microscopic examination showed that micritic aragonite and Mg-calcite aggregates or crusts are common authigenic precipitations within the barite fabric. Equivalent micritic carbonates and barite carbonate cemented worm tubes were recovered from sediment cores taken in the vicinity of the barite build-up area. Negative d13C values of these carbonates (>-43.5 per mill PDB) indicate methane as major carbon source; d18O values between 4.04 and 5.88 per mill PDB correspond to formation temperatures, which are certainly below 5°C. One core also contained shells of Calyptogena sp. at different core depths with 14C-ages ranging from 20 680 to >49 080 yr. Pore water analyses revealed that fluids also contain high amounts of Ba; they also show decreasing SO4**2- concentrations and a parallel increase of H2S with depth. Additionally, S and O isotope data of barite sulfate (d34S: 21.0-38.6 per mill CDT; d18O: 9.0-17.6 per mill SMOW) strongly point to biological sulfate reduction processes. The isotope ranges of both S and O can be exclusively explained as the result of a mixture of residual sulfate after a biological sulfate reduction and isotopic fractionation with 'normal' seawater sulfate. While massive barite deposits are commonly assumed to be of hydrothermal origin, the assemblage of cheomautotrophic clams, methane-derived carbonates, and non-thermally equilibrated barite sulfate strongly implies that these barites have formed at ambient bottom water temperatures and form the features of a Giant Cold Seep setting that has been active for at least 49 000 yr.
Resumo:
The widespread occurrence of microbialites in the last deglacial reef frameworks (16-6 Ka BP) implies that the accurate study of their development patterns is of prime importance to unravel the evolution of reef architecture through time and to reconstruct the reef response to sea-level variations and environmental changes. The present study is based on the sedimentological and chronological analysis (14C AMS dating) of drill cores obtained during the IODP Expedition #310 "Tahiti Sea Level" on the successive terraces which typify the modern reef slopes from Tahiti. It provides a comprehensive data base to investigate the microbialite growth patterns (i.e. growth rates and habitats), to analyze their roles in reef frameworks and to reconstruct the evolution of the reef framework architecture during sea-level rise. The last deglacial reefs from Tahiti are composed of two distinctive biological communities: (1) the coralgal communities including seven assemblages characterized by various growth forms (branching, robust branching, massive, tabular and encrusting) that form the initial frameworks and (2) the microbial communities developed in the primary cavities of those frameworks, a few meters (1.5 to 6 m) below the living coral reef surface, where they heavily encrusted the coralgal assemblages to form microbialite crusts. The dating results demonstrate the occurrence of two distinctive generations of microbialites: the "reefal microbialites" which developed a few hundred years after coralgal communities in shallow-water environments, whereas the "slope microbialites" grew a few thousands of years later in significantly deeper water conditions after the demise of coralgal communities. The development of microbialites was controlled by the volume and the shape of the primary cavities of the initial reef frameworks determined by the morphology and the packing of coral colonies. The most widespread microbialite development occurred in frameworks dominated by branching, thin encrusting, tabular and robust branching coral colonies which built loose and open frameworks typified by a high porosity (> 50%). In contrast, their growth was minimal in compact coral frameworks formed by massive and thick encrusting corals where primary cavities yielded a low porosity (~ 30%) and could not host a significant microbialite expansion.
Resumo:
The Drake Passage (DP) is the major geographic constriction for the Antarctic Circumpolar Current (ACC) and exerts a strong control on the exchange of physical, chemical, and biological properties between the Atlantic, Pacific, and Indian Ocean basins. Resolving changes in the flow of circumpolar water masses through this gateway is, therefore, crucial for advancing our understanding of the Southern Ocean's role in global ocean and climate variability. Here, we reconstruct changes in DP throughflow dynamics over the past 65,000 y based on grain size and geochemical properties of sediment records from the southernmost continental margin of South America. Combined with published sediment records from the Scotia Sea, we argue for a considerable total reduction of DP transport and reveal an up to ~40% decrease in flow speed along the northernmost ACC pathway entering the DP during glacial times. Superimposed on this long-term decrease are high-amplitude, millennial-scale variations, which parallel Southern Ocean and Antarctic temperature patterns. The glacial intervals of strong weakening of the ACC entering the DP imply an enhanced export of northern ACC surface and intermediate waters into the South Pacific Gyre and reduced Pacific-Atlantic exchange through the DP ("cold water route"). We conclude that changes in DP throughflow play a critical role for the global meridional overturning circulation and interbasin exchange in the Southern Ocean, most likely regulated by variations in the westerly wind field and changes in Antarctic sea ice extent.
Resumo:
New Mg/Ca, Sr/Ca, and published stable oxygen isotope and 87Sr/86Sr data obtained on ostracods from gravity cores located on the northwestern Black Sea slope were used to infer changes in the Black Sea hydrology and water chemistry for the period between 30 to 8 ka B.P. (calibrated radiocarbon years). The period prior to 16.5 ka B.P. was characterized by stable conditions in all records until a distinct drop in d18O values combined with a sharp increase in 87Sr/86Sr occurred between 16.5 and 14.8 ka B.P. This event is attributed to an increased runoff from the northern drainage area of the Black Sea between Heinrich Event 1 and the onset of the Bølling warm period. While the Mg/Ca and Sr/Ca records remained rather unaffected by this inflow; they show an abrupt rise with the onset of the Bølling/Allerød warm period. This rise was caused by calcite precipitation in the surface water, which led to a sudden increase of the Sr/Ca and Mg/Ca ratios of the Black Sea water. The stable oxygen isotopes also start to increase around 15 ka B.P., although in a more gradual manner, due to isotopically enriched meteoric precipitation. While Sr/Ca remains constant during the following interval of the Younger Dryas cold period, a decrease in the Mg/Ca ratio implies that the intermediate water masses of the Black Sea temporarily cooled by 1-2°C during the Younger Dryas. The 87Sr/86Sr values drop after the cessation of the water inflow at 15 ka B.P. to a lower level until the Younger Dryas, where they reach values similar to those observed during the Last Glacial Maximum. This might point to a potential outflow to the Mediterranean Sea via the Sea of Marmara during this period. The inflow of Mediterranean water started around 9.3 ka B.P., which is clearly detectable in the abruptly increasing Mg/Ca, Sr/Ca, and 87Sr/86Sr values. The accompanying increase in the d18O record is less pronounced and would fit to an inflow lasting ~100 a.
Resumo:
Hide Intense debate persists about the climatic mechanisms governing hydrologic changes in tropical and subtropical southeast Africa since the Last Glacial Maximum, about 20,000 years ago. In particular, the relative importance of atmospheric and oceanic processes is not firmly established. Southward shifts of the intertropical convergence zone (ITCZ) driven by high-latitude climate changes have been suggested as a primary forcing, whereas other studies infer a predominant influence of Indian Ocean sea surface temperatures on regional rainfall changes. To address this question, a continuous record representing an integrated signal of regional climate variability is required, but has until now been missing. Here we show that remote atmospheric forcing by cold events in the northern high latitudes appears to have been the main driver of hydro-climatology in southeast Africa during rapid climate changes over the past 17,000 years. Our results are based on a reconstruction of precipitation and river discharge changes, as recorded in a marine sediment core off the mouth of the Zambezi River, near the southern boundary of the modern seasonal ITCZ migration. Indian Ocean sea surface temperatures did not exert a primary control over southeast African hydrologic variability. Instead, phases of high precipitation and terrestrial discharge occurred when the ITCZ was forced southwards during Northern Hemisphere cold events, such as Heinrich stadial 1 (around 16,000 years ago) and the Younger Dryas (around 12,000 years ago), or when local summer insolation was high in the late Holocene, i.e., during the last 4,000 years.