5 resultados para Advanced age

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sites 1147 (18°50.11'N, 116°33.28'E; water depth = 3246 m) and 1148 (18°50.17'N, 116°33.94'E; water depth = 3294 m) are located on the lowermost continental slope off southern China near the continent/ocean crust boundary of the South China Sea Basin. Site 1147 is located upslope ~0.45 nmi west of Site 1148. Three advanced piston corer holes at Site 1147 and two extended core barrel holes at Site 1148 were cored and combined into a composite (spliced) stratigraphic section, which provided a relatively continuous profile for the lower Oligocene to Holocene (Wang, Prell, Blum, et al., 2000, doi:10.2973/odp.proc.ir.184.2000; Jian, et al., 2001, doi:10.1007/BF02907088) for studying stratigraphy and paleoceanography. A total of 1047 planktonic foraminifers stable isotope measurements were performed on 975 samples covering the upper 409.58 meters composite depth (mcd) at ~42-cm intervals (Tables T1, T2), and a total of 1864 benthic foraminifers measurements were performed on 1650 samples in the upper 837.11 mcd at ~51-cm intervals (Tables T3, T4). We significantly improved the time resolution of the benthic stable isotope record in the upper 476.68 mcd by reducing the average sample spacing to ~29 cm. This translates into an average sampling resolution of ~16 k.y. for the Miocene sequence and ~8 k.y. for the Pliocene-Holocene interval, assuming a change in sedimentation rates from ~1.8 to ~3.5 cm/k.y., as suggested by shipboard stratigraphy. These data sets provide the basis for upcoming studies to establish an oxygen isotope stratigraphy and examine the Neogene evolution of deep and surface water signatures (temperature, salinity, and nutrients) in the South China Sea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examined the use of mercury (Hg) and nitrogen and carbon stable isotopes in teeth of polar bear (Ursus maritimus) from Svalbard as biotracers of temporal changes in Hg pollution exposure between 1964 and 2003. Teeth were regarded as a good matrix of the Hg exposure, and in total 87 teeth of polar bears were analysed. Dental Hg levels ranged from 0.6 to 72.3 ng/g dry weight and increased with age during the first 10 years of life. A decreasing time trend in Hg concentrations was observed over the recent four decades while no temporal changes were found in the stable isotope ratios of nitrogen (d15N) and carbon (d13C). This suggests that the decrease of Hg concentrations over time was more likely due to a lower environmental Hg exposure in this region rather than a shift in the feeding habits of Svalbard polar bears.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Late Quaternary sediment yields from the Isfjorden drainage area (7327 km**2), a high arctic region on Svalbard characterized by an alpine landscape, have been reconstructed by using seismic stratigraphy supported by sediment core analysis. The sediments that accumulated in the fjord during and since deglaciation can be divided into three stratigraphic units. The volumes of these units were determined and converted into sediment yield rates averaged over the drainage basin. During deglaciation, 13 to 10 ka, the sediment yield was ~860 tons(t)/km**2/yr. In the early Holocene it decreased to 190 t/km**2/yr, and then increased to 390t/km**2/yr during the late Holocene Little Ice Age. When normalized to the approximate glacierized area, these rates correspond to a sediment yield of ~800 t/km**2/yr . Sediment yield from non-glacierized parts of the drainage is estimated to be 35 t/km**2/yr. At times when ice advanced to the shelf edge, sediment was scoured from the fjord and deposited on the outer shelf and in a well-defined deep sea fan. Between 200 ka and 13 ka, 328 km**3 of sediment accumulated here, corresponding to a mean sediment yield rate of 335 t/km**2/yr. This is broadly consistent with calculations based on the above rates of sediment yield in glacierized and non-glacierized areas, and on estimates, based on glacial geology, of the temporal variation in degree of glacierization over the past 200 kyr. These figures indicate that much of the glacigenic sediment on the shelf and slope was eroded from the uplands of Svalbard by small glaciers during interstadials and interglacials. The sediments were temporarily stored in the fjord prior to redeposition on the shelf and slope during ice sheet advance. Taken into consideration, such redisposition of pre-eroded material will reduce estimates of primary ice sheet erosion rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data on glacial erosion have been compiled and synthesised using a wide range of sediment budget and sediment yield studies from the Svalbard-Barents Sea region. The data include studies ranging in timescale from 1 to 10**6 yr, and in size of drainage basin from 101 to 105 km**2. They show a clear dependence of sediment yield on the mode of glacierization. Polar glaciers erode at rates comparable to those found in Arctic fluvial basins, or about 40 t/km**-2/ yr or 0.02 mm/yr. In contrast, rates of erosion by polythermal glaciers are 800-1000 t/km**2/ yr (or ca 0.3-0.4 mm/yr), while rates from fast-flowing glaciers are slightly more than twice this: 2100 t/km**2/yr (or 1 mm/yr). Similar rates are also found for large glacierized basins like those in the southwestern parts of the Barents Sea. In contrast to the situation in fluvial basins, in which sediment yield typically decreases with increasing basin size, the tendency in glacierized basins is for erosion to be independent of basin size. In studies of sediment yield from glaciers it is sometimes difficult to distinguish between material actually dislodged from the bedrock by glaciers and material dislodged by other processes in interglacial times and simply transported to a depocenter by a glacier. Our data suggest that pulses of sediment resulting from advance of a glacier over previously-dislodged material last on the order of 10**3 yr, and result in inferred erosion rates that are approximately 25% higher than long-term average rates of glacial erosion. The maximum sediment fluxes from the large Storfjorden and Bear Island drainage basins occurred in mid-Pleistocene. The onset of this period of high sediment yield coincided with the onset of the 100 kyr glacial cycle. We presume that this was the beginning of a period of increased glacial activity, but one in which glaciers still advanced and retreated frequently. During the last two to four 100 kyr cycles, however, sediment yields appear to have decreased. This decrease may be the result of the submergence of the Barents Sea. Glacier erosion would be much higher for a subaerial Barents Sea setting than it would be for a present day subsea Barents Sea. A classical question in Quaternary Geology is whether glaciers are more erosive than rivers. We surmise that if factors such as the lithology and the available potential energy (mgh) of the precipitation falling at a given altitude, whether in liquid or solid form, are held constant, then glaciers are vastly more effective agents of erosion than rivers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 9.14 m long sediment sequence was recovered from Lake Fryxell, Taylor Valley, southern Victoria Land, Antarctica, and investigated for its chronology and sedimentological, mineralogical, and biogeochemical changes. The basal part of the sequence is dominated by coarse clastic matter, i.e., mainly sand. The sediment composition suggests that a lake existed in Fryxell basin during the Middle Weichselian by ca. 48,000 cal. year BP. After a short period of lake-level lowstand ca. 43,000 cal. year BP, lower Taylor Valley became occupied by the proglacial Lake Washburn, which was at least partly supplied by meltwater and sediments from the Ross Ice Sheet that was advanced to the mouth of Taylor Valley. Evaporation of Lake Washburn to lower levels started during the Last Glacial Maximum at ca. 22,000 cal. year BP, long before the Ross Ice Sheet retreated significantly. Lake-level lowering was discontinuous with a series of high and low stands. From ca. 4000 cal. year BP environmental conditions were similar to those of today and lower Fryxell basin was occupied by a small lake. This lake evaporated to a saline or hypersaline pond between ca. 2500 and 1000 cal. year BP and refilled subsequently.