7 resultados para Adolescence--New England--18th century--Sources

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dataset gives the collecting information of New England Seamount Geodia species from the Yale Peabody Museum. Museum numbers, fixation processing and Genbank accession numbers are also given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Rieseberger Moor is a fen, 145 hectares in size, situated about 20 km east of Brunswick (Braunschweig), Lower Saxony, Germany. Peat was dug in the fen - with changing intensity - since the mid-18th century until around AD 1955. According to Schneekloth & Schneider (1971) the remaining peat (fen and wood peat) is predominantly 1.5 to 2 m thick (maximum 2.7 m). Part of the fen - now a nature reserve (NSG BR 005) - is wooded (Betula, Salix, Alnus). For more information on the Rieseberger Moor see http://de.wikipedia.org/wiki/Rieseberger_Moor. Willi Selle was the first to publish pollen diagrams from this site (Selle 1935, profiles Rieseberger Torfmoor I and II). This report deals with a 2.2 m long profile from the wooded south-eastern part of the fen consisting of strongly decomposed fen peat taken A.D. 1965 and studied by pollen analysis in the same year. The peat below 1.45 m contained silt and clay, samples 1.48 and 1.58 m even fine sand. These samples had to be treated with HF (hydrofluoric acid) in addition to the treatment with hot caustic potash solution. The coring ended in sandy material. The new pollen data reflect the early part of the known postglacial development of the vegetation of this area: the change from a birch dominated forest to a pine forest and the later spreading of Corylus and of the thermophilous deciduous tree genera Quercus, Ulmus, Tilia and Fraxinus followed by the expansion of Alnus. The new data are in agreement with Selle's results, except for Alnus, which in Selle's pollen diagram II shows high values (up to 42% of the arboreal pollen sum) even in samples deposited before Corylus and Quercus started to spread. On contrary the new pollen diagram shows that alder pollen - although present in all samples - is frequent in the three youngest pollen spectra only. A period with dominating Alnus as seen in the uppermost part of Selle's pollen diagrams is missing. The latter is most likely the result of peat cutting at the later coring site, whereas the early, unusually high alder values of Selle's pollen study are probably caused by contamination of the pollen samples with younger peat. Selle took peat samples usually with a "Torfbohrer" (= Hiller sampler). This side-filling type of sampler with an inner chamber and an outer loose jacket offers - if not handled with appropriate care - ample opportunities to contaminate older peat with carried off younger material. Pollen grains of Fagus (2 % of the arboreal pollen sum) were found in two samples only, namely in the uppermost samples of the new profile (0.18 m) and of Selle's profile I (0.25 m). If this pollen is autochthonous, with other words: if this surface-near peat was not disturbed by human activities, the Fagus pollen indicates an Early Subboreal age of this part of the profile. The accumulation of the Rieseberg peat started during the Preboreal. Increased values of Corylus, Quercus and Ulmus indicate that sample 0.78 m of the new profile is the oldest Boreal sample. The high Alnus values prove the Atlantic age of the younger peat. Whether Early Subboreal peat exists at the site is questionable, but evidently none of the three profiles reaches to Late Subboreal time, when Fagus spread in the region. Did peat-growth end during the Subboreal? Did younger peat exist, but got lost by peat cutting or has younger peat simply not yet been found in the Rieseberg fen? These questions cannot be answered with this study. The temporary decline of the curve of Pinus for the benefit of Betula during the Preboreal, unusual for this period, is contemporaneous with the deposition of sand (Rieseberger Moor II, 1.33 - 1,41 m; samples 1.48 and 1.58 m of the new profile) and must be considered a local phenomenon. Literature: Schneekloth, Heinrich & Schneider, Siegfried (1971). Die Moore in Niedersachsen. 2. Teil. Bereich des Blattes Braunschweig der Geologischen Karte der Bundesrepublik Deutschland (1:200000). - Schriften der wirtschaftswissenschaftlichen Gesellschaft zum Studium Niedersachsens e.V. Reihe A I., Band 96, Heft 2, 83 Seiten, Göttingen. Selle, Willi (1935) Das Torfmoor bei Rieseberg. - Jahresbericht des Vereins für Naturwissenschaft zu Braunschweig, 23, 46-58, Braunschweig.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three conical sediment were deployed at three depths 968 m (top trap), 1976 m (middletrap), and 2938 m (50mabove the bottom, bottom trap) - from June 27, 2004 to April 27, 2005 on the NW Atlantic margin at a water depth of 2988 m. The sediment trap carousels were programmed to open each collection cup for 23.4 days for the top trap and 14.5 days for the other two traps, resulting in total 13 samples from the top trap and 21 samples each from the middle and bottom traps. The samples were analyzed for the biogeochemical properties with various methods. Frequent occurrences of higher fluxes in deep relative to shallower sediment traps and low delta 14C values of sinking POC together provide strong evidence for significant lateral transport of aged organic matter over the margin. Comparison of biogeochemical properties such as aluminum concentration and flux, and iron concentration between samples intercepted at different depths shows that particles collected by the deepest trap had more complex sources than the shallower ones. These data also suggest that at least two modes of lateral transport exist over the New England margin. Based on radio carbon mass balance, about 30% (± 10%) of sinking POC in all sediment traps is estimated to be derived from lateral transport of re-suspended sediment. A strong correlation between delta 14C values and aluminum concentrations suggests that the aged organic matter is associated with lithogenic particles.