6 resultados para Acid-activated clay

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leg 94 Sites are located in a large geographic area of the northeastern Atlantic. Clay mineral analyses of the sediments recovered on Leg 94 (Eocene to the present), together with results obtained from previous DSDP legs (47B, 48, 80, 81, 82), provide greater insight into the paleoenvironmental evolution of the northeastern Atlantic. The characteristics of Eocene clay sediments are regional, reflecting, in the absence of strong bottom currents, the influence of neighboring petrographic environments: basic volcanic rocks (Sites 403-406, 552, and 608) and acid volcanic rocks (Sites 508 to 510). During the Oligocene, atmospheric circulation patterns left their mineralogical signatures in the southern part of the area investigated (Sites 558 and 608), whereas during the Miocene the intrusion of northern water masses led to the gradual homogenization of the clay sedimentation throughout the North Atlantic. In the late Pliocene, input from glacial sources became widespread.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selected parts of ten frozen core samples from Holes 482A, 482B, 483A, and 485A, Leg 65 of the Deep Sea Drilling Project (DSDP), were analyzed for residual carbohydrates in order to determine the provenance and history of the organic material in the sediments. The samples, which represented silty-clay, shale, and nannofossil- chalk sediments, were analyzed for water-soluble monosaccharides, acid-soluble monosaccharides, and for starch and cellulose. Most samples yielded positive results for acid-extractable (polymeric) arabinose, fucose, xylose, mannose, galactose, and glucose. Amylose was detected in seven of the samples, whereas cellulose was found in only one. Possible explanations for the relatively high levels of free sugars are suggested in the conclusions to this chapter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The capacity of the East Asian seaweed Gracilaria vermiculophylla ("Ogonori") for production of prostaglandin E2 from arachidonic acid occasionally causes food poisoning after ingestion. During the last two decades the alga has been introduced to Europe and North America. Non-native populations have been shown to be generally less palatable to marine herbivores than native populations. We hypothesized that the difference in palatability among populations could be due to differences in the algal content of prostaglandins. We therefore compared the capacity for wound-activated production of prostaglandins and other eicosatetraenoid oxylipins among five native populations in East Asia and seven non-native populations in Europe and NW Mexico, using a targeted metabolomics approach. In two independent experiments non-native populations exhibited a significant tendency to produce more eicosatetraenoids than native populations after acclimation to identical conditions and subsequent artificial wounding. Fourteen out of 15 eicosatetraenoids that were detected in experiment I and all 19 eicosatetraenoids that were detected in experiment II reached higher mean concentrations in non-native than in native specimens. The datasets generated in both experiments are contained in http://doi.pangaea.de/10.1594/PANGAEA.855008. Wounding of non-native specimens resulted on average in 390 % more 15-keto-PGE2, in 90 % more PGE2, in 37 % more PGA2 and in 96 % more 7,8-di-hydroxy eicosatetraenoic acid than wounding of native specimens. The dataset underlying this statement is contained in http://doi.pangaea.de/10.1594/PANGAEA.854847. Not only PGE2, but also PGA2 and dihydroxylated eicosatetraenoic acid are known to deter various biological enemies of G. vermiculophylla that cause tissue or cell wounding, and in the present study the latter two compounds also repelled the mesograzer Littorina brevicula. The dataset underlying this statement is contained in http://doi.pangaea.de/10.1594/PANGAEA.854922. Non-native populations of G. vermiculophylla are thus more defended against herbivory than native populations. This increased capacity for activated chemical defense may have contributed to their invasion success and at the same time it poses an elevated risk for human food safety.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microorganisms inhabit very different soil habitats in the ice-free areas of Antarctica, playing a major role in nutrient cycling in cold environments. We studied the soil characteristics and the dominant bacterial composition from nine different soil profiles located on Livingston Island (maritime Antarctica). The total carbon (TC) and total nitrogen (TN) values were high for the vegetated soils, decreasing with depth, whereas the values for the mineral soils were generally low. Soil pH was more acidic for moss-covered soils and neutral to alkaline for mineral soils. Numbers of culturable heterotrophic bacteria were higher at vegetated sites, but significant numbers were also detectable in carbon-depleted soils. Patterns of denaturing gradient gel electrophoresis (DGGE) revealed a highly heterogeneous picture throughout the soil profiles. Subsequent sequencing of DGGE bands revealed in total 252 sequences that could be assigned to 114 operational taxonomic units, showing the dominance of members of the Bacteroidetes and Acidobacteria. The results of phospholipid fatty acid analysis showed a lack of unsaturated fatty acids for most of the samples. Samples with a prevalence of unsaturated over saturated fatty acids were restricted to several surface samples. Statistical analysis showed that the dominant soil bacterial community composition is most affected by TC and TN contents and soil physical factors such as grain size and moisture, but not pH. Keywords