1 resultado para Academic performance prediction
em Publishing Network for Geoscientific
Filtro por publicador
- Repository Napier (1)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (3)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (18)
- Biblioteca de Teses e Dissertações da USP (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (5)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (9)
- Boston University Digital Common (2)
- Brock University, Canada (17)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Cambridge University Engineering Department Publications Database (22)
- CentAUR: Central Archive University of Reading - UK (44)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (11)
- Clark Digital Commons--knowledge; creativity; research; and innovation of Clark University (1)
- Cochin University of Science & Technology (CUSAT), India (7)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (4)
- Dalarna University College Electronic Archive (3)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ Winthrop University (3)
- Digital Commons at Florida International University (34)
- DigitalCommons@The Texas Medical Center (8)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (2)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Greenwich Academic Literature Archive - UK (4)
- Helda - Digital Repository of University of Helsinki (1)
- Indian Institute of Science - Bangalore - Índia (41)
- Instituto Politécnico de Viseu (2)
- Instituto Politécnico do Porto, Portugal (1)
- Instituto Superior de Psicologia Aplicada - Lisboa (3)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Ministerio de Cultura, Spain (5)
- Open University Netherlands (2)
- Portal de Revistas Científicas Complutenses - Espanha (12)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (59)
- Queensland University of Technology - ePrints Archive (122)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (2)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (3)
- REPOSITÓRIO ABERTO do Instituto Superior Miguel Torga - Portugal (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (7)
- Repositório Científico da Universidade de Évora - Portugal (4)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (5)
- Repositorio de la Universidad de Cuenca (6)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (73)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (3)
- Scielo España (1)
- South Carolina State Documents Depository (2)
- Universidad de Alicante (18)
- Universidad del Rosario, Colombia (18)
- Universidad Politécnica de Madrid (21)
- Universidade de Lisboa - Repositório Aberto (5)
- Universidade Federal do Rio Grande do Norte (UFRN) (11)
- Universidade Metodista de São Paulo (3)
- Universidade Técnica de Lisboa (2)
- Universitat de Girona, Spain (5)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (2)
- Université de Montréal, Canada (18)
- Université Laval Mémoires et thèses électroniques (2)
- University of Connecticut - USA (1)
- University of Michigan (6)
- University of Queensland eSpace - Australia (9)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
We introduce two probabilistic, data-driven models that predict a ship's speed and the situations where a ship is probable to get stuck in ice based on the joint effect of ice features such as the thickness and concentration of level ice, ice ridges, rafted ice, moreover ice compression is considered. To develop the models to datasets were utilized. First, the data from the Automatic Identification System about the performance of a selected ship was used. Second, a numerical ice model HELMI, developed in the Finnish Meteorological Institute, provided information about the ice field. The relations between the ice conditions and ship movements were established using Bayesian learning algorithms. The case study presented in this paper considers a single and unassisted trip of an ice-strengthened bulk carrier between two Finnish ports in the presence of challenging ice conditions, which varied in time and space. The obtained results show good prediction power of the models. This means, on average 80% for predicting the ship's speed within specified bins, and above 90% for predicting cases where a ship may get stuck in ice. We expect this new approach to facilitate the safe and effective route selection problem for ice-covered waters where the ship performance is reflected in the objective function.