20 resultados para Absorption Fine-structure

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the international "Overflow-Expedition'' 1973 on R.V. "Meteor" oxygen concentrations in surface layers were measured in order to determine the oxygen gradients within the first two meters and to add some informations to the mechanisms of oxygen exchange at the air-sea interface. These investigations may be interesting also with regard to longterm- observations of the oxygen distribution in the Atlantic, especially the problem of the A.O.U. (apparent oxygen utilization) determination. To measure oxygen gradients a special sampler was built which is able to take water samples each 20 cm of the first 2 meters. These data were supplemented by further samples down to 150 m, taken by conventional water samplers, from which samples were also taken to measure N2/O2-relations. By comparing these relations with theoretical relations in air-saturated water the influence of biological production and consumption on the oxygen contents in water could be estimated. A simple glass apparatus was built to extract gas from the water samples, and hereafter the N2/O2-relations were determined by mass spectrometry. Most distributions of the oxygen anomaly show a negative oxygen balance which varies largely, probably due to strong mixing processes in the Iceland-Faroe ridge area. The distribution of surface oxygen saturation values are of two different types. The values of the stations 260, 262 and 270 stem from mixed water and show homogeneous supersaturations, as can be found instantly when whitecaps appear. The values of 9 other stations are from water, sampled during calm periods which has been mixed and supersaturated before. They show a decreasing oxygen saturation towards the sea surface and often undersaturation in the upper decimeters up to 98 % and even 91 %. So at the air-sea interface even less initial oxygen saturation than 100 % can be found after supersaturation during heavy weather periods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fossil Mn nodules of Cretaceous age from western Timor exhibit chemical, structural and radioisotope compositions consistent with their being of deep-sea origin. These nodules show characteristics similar to nodules now found at depths of 3,500-5,000 m in the Pacific and Indian Oceans. Slight differences in the fine structure and chemistry of these nodules and modern deep-sea nodules are attributed to diagenetic alteration after uplift of enclosing sediments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Osmium (Os) isotope analyses of bulk sediments from the South Atlantic, Equatorial Pacific, and the Italian Apennines yield a well-dated and coherent pattern of 187Os/188Os variation from the late Eocene to the early Oligocene. The resulting composite record demonstrates the global character of two prominent features of the low-resolution LL44-GPC3 Os isotope record (Pegram and Turekian, 1999, doi:10.1016/S0016-7037(99)00308-7). These are: (1) a pronounced minimum in 187Os/188Os (0.22-0.27) in the late Eocene, between 34 and 34.5 Ma, and (2) a subsequent rapid increase in 187Os/188Os, to approximately 0.6 by 32 Ma. An ultramafic weathering event and an increased influx of extraterrestrial particles to the Earth are discussed as alternative explanations for the late Eocene 187Os/188Os minimum. Comparison of the 187Os/188Os to benthic foraminiferal oxygen isotope records demonstrates that the nearly three-fold increase in 187Os/188Os from the late Eocene minimum coincides with the growth and decay of the first large ice sheet of the Oligocene (Oi1 (Miller et al., 1991, doi:10.1029/90JB02015)). The fine structure of the Os isotope record indicates that enhanced release of radiogenic Os, unrelated to the recovery from late Eocene minimum, lagged the initiation of the Oi1 event by roughly 0.5 Myr. This record, in conjunction with weathering studies in modern glacial soils (Blum, in: W.F. Ruddiman (Ed.), Tectonic Uplift and Climate Change, Plenum Press, New York, 1997, pp. 259-288; Peucker-Ehrenbrink and Blum, 1998, doi:10.1016/S0016-7037(98)00227-0), suggests that exposure of freshly eroded material during deglaciation following Oi1 enhanced chemical weathering rates, and may have contributed to ice sheet stabilization by drawing down atmospheric carbon dioxide. The improved temporal resolution and age control of the refined Eocene-Oligocene Os isotope record also makes it possible to illustrate the late Eocene Os isotope excursion as a tool for global correlation of marine sediments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The studies described here base mainly on sedimentary material collected during the "Indian Ocean Expedition" of the German research vessel "Meteor" in the region of the Indian-Pakistan continental margin in February and March 1965. Moreover,samples from the mouth of the Indus-River were available, which were collected by the Pakistan fishing vessel "Machhera" in March 1965. Altogether, the following quantities of sedimentary material were collected: 59.73 m piston cores. 54.52 m gravity cores. 33 box grab samples. 68 bottom grab samples Component analyses of the coarse fraction were made of these samples and the sedimentary fabric was examined. Moreover, the CaCO3 and Corg contents were discussed. From these investigations the following history of sedimentation can be derived: Recent sedimentation on the shelf is mainly characterized by hydrodynamic processes and terrigenous supply of material. In the shallow water wave action and currents running parallel to the coast, imply a repeated reworking which induces a sorting of the grains and layering of the sediments as well as a lack of bioturbation. The sedimentation rate is very high here. From the coast-line down to appr. 50 m the sediment becomes progressively finer, the conditions of deposition become less turbulent. On the outer shelf the sediment is again considerably coarser. It contains many relicts of planktonic organisms and it shows traces of burrowing. Indications for redeposition are nearly missing, a considerable part of the fine fraction of the sediments is, however, whirled up and carried away. In wide areas of the outer shelf this stirring has gained such a degree that recent deposits are nearly completely missing. Here, coarse relict sands rich in ooids are exposed, which were formed in very shallow stirred water during the time when the sea reached its lowest level, i.e. at the turn of the Pleistocene to the Holocene. Below the relict sand white, very fine-grained aragonite mud was found at one location (core 228). This aragonite mud was obviously deposited in very calm water of some greater depth, possibly behind a reef barrier. Biochemic carbonate precipitation played an important part in the formation of relict sands and aragonite muds. In postglacial times the relict sands were exposed for long periods to violent wave action and to areal erosion. In the present days they are gradually covered by recent sediments proceeding from the sides. On the continental margin beyond the shelf edge the distribution of the sediments is to a considerable extent determined by the morphology of the sea bottom. The material originating from the continent and/or the shelf, is less transported by action of the water than by the force of gravity. Within the range of the uppermost part of the continental slope recent sedimentation reaches its maximum. Here the fine material is deposited which has been whirled up in the zone of the relict sands. A laminated fine-grained sediment is formed here due to the very high sedimentation rate as well as to the extremely low O2-content in the bottom water, which prevents life on the bottom of the sea and impedes thus also bioturbation. The lamination probaly reflects annual variation in deposition and can be attributed to the rhythm of the monsoon with its effects on the water and the weather conditions. In the lower part of the upper continental slope sediments are to be found which show in varying intensity, intercalations of fine material (silt) from the shelf, in large sections of the core. These fine intercalations of allochthonous material are closely related to the autochthonous normal sediment, so that a great number of small individual depositional processes can be inferred. In general the intercalations are missing in the uppermost part of the cores; in the lower part they can be met in different quantities, and they reach their maximum frequency in the upper part of the lower core section. The depositions described here were designated as turbid layer sediments, since they get their material from turbid layers, which transport components to the continental slope which have been whirled up from the shelf. Turbidites are missing in this zone. Since the whole upper continental slope shows a low oxygen-content of the bottom water the structure of the turbid layer sediments is more or less preserved. The lenticular-phacoidal fine structure does, however, not reflect annual rhythms, but sporadic individual events, as e.g. tsunamis. At the lower part of the continental slope and on the continental rise the majority of turbidites was deposited, which, during glacial times and particularly at the beginning of the post-glacial period, transported material from the zone of relict sands. The Laccadive Ridge represented a natural obstacle for the transport of suspended sediments into the deep sea. Core SIC-181 from the Arabian Basin shows some intercalations of turbidites; their material, however, does not originate from the Indian Shelf, but from the Laccadive Ridge. Within the range of the Indus Cone it is surprising that distinct turbidites are nearly completely missing; on the other hand, turbid layer sediments are to be found. The bottom of the sea is showing still a slight slope here, so that the turbidites funneled through the Canyon of the Swatch probably rush down to greater water depths. Due to the particularly large supply of suspended material by theIndus River the turbid layer sediments show farther extension than in other regions. In general the terrigenous components are concentrated on the Indus Cone. It is within the range of the lower continental slope that the only discovery of a sliding mass (core 186) has been located. It can be assumed that this was set in motion during the Holocene. During the period of time discussed here the following development of kind and intensity of the deposition of allochthonous material can be observed on the Indian-Pakistan continental margin: At the time of the lowest sea level the shelf was only very narrow, and the zone in which bottom currents were able to stir up material by oscillating motion, was considerably confined. The rivers flowed into the sea near to the edge of the shelf. For this reason the percentage of terrigenous material, quartz and mica is higher in the lower part of many cores (e.g. cores 210 and 219) than in the upper part. The transition from glacial to postglacial times caused a series of environmental changes. Among them the rise of the sea level (in the area of investigation appr. 150 m) had the most important influence on the sedimentation process. In connection with this event many river valleys became canyons, which sucked sedimentary material away from the shelf and transported it in form of turbidites into the deep sea. During the rise of the sea level a situation can be expected with a maximum area of the comparatively plane shelf being exposed to wave action. During this time the process of stirring up of sediments and formation of turbid layers will reach a maximum. Accordingly, the formation of turbidites and turbid layer sediments are most frequent at the same time. This happened in general in the older polstglacial period. The present day high water level results in a reduced supply of sediments into the canyons. The stirring up of sediments from the shelf by wave action is restricted to the finest material. The missing of shelf material in the uppermost core sections can thus be explained. The laminated muds reflect these calm sedimentation conditions as well. In the southwestern part of the area of investigation fine volcanic glass was blown in during the Pleistocene, probably from the southeast. It has thus become possible to correlate the cores 181, 182, 202. Eolian dust from the Indian subcontinent represents probably an important component of the deep sea sediments. The chemism of the bottom as well as of the pore water has a considerable influence on the development of the sediments. Of particular importance in this connection is a layer with a minimum content of oxygen in the sea water (200-1500 m), which today touches the upper part of the continental slope. Above and beyond this oxygen minimum layer somewhat higher O2-values are to be observed at the sea bottom. During the Pleistocene the oxygen minimum layer has obviously been locatedin greater depth as is indicated by the facies of laminated mud occuring in the lower part of core 219. The type of bioturbation is mainly determined by the chemism. Moreover, the chemism is responsible for a considerable selective dissolution, either complete or partial, of the sedimentary components. Within the range of the oxygen minimum layer an alkaline milieu is developed at the bottom. This causes a complete or partial dissolution of the siliceous organisms. Here, bioturbation is in general completely missing; sometimes small pyrite-filled burrowing racks are found. In the areas rich in O2 high pH-values result in a partial dissolution of the calcareous shells. Large, non-pyritized burrowing tracks characterize the type of bioturbation in this environment. A study of the "lebensspuren" in the cores supports the assumption that, particularly within the region of the Laccadive Basin, the oxygen content in the bottom sediments was lower than during the Holocene. This may be attributed to a high sedimentation rate and to a lower O2-content of the bottom water. The composition of the allochthonous sedimentary components, detritus and/or volcanic glass may locally change the chemism to a considerable extent for a certain time; under such special circumstances the type of bioturbation and the state of preservation of the components may be different from those of the normal sediment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fine structure of vertical distributions of phosphorus and silicon in near-bottom layers and interstitial waters is studied in different regions of the Baltic Sea (Gulf of Finland, Bornholm area, Gotland trench). Data obtained are used to calculate fluxes of mineral forms of phosphorus and silicon in exchange processes between sediments and the near-bottom water layer. Depending on sediment types, values of nutrient fluxes vary from 9.8 to 632.6 µg-at/m**2/day for phosphorus and from 232.4 to 1881.1 µg-at/m**2/day for silicon. Fluxes calculated for different regions are compared.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The monograph focuses on the analysis of data addressing the problem of H2S contamination and oxic-anoxic interface in the Black Sea. Regularities of the fine structure of vertical distribution of oxygen, hydrogen sulfide, biogenic elements, organic substances, suspended matter, and metals of the iron-manganese group in the area of contact of aerobic and anaerobic waters have been revealed. Also effects of biochemical, physico-chemical and dynamic processes on their vertical distribution have been examined. Sulfate reduction in seawater and bottom sediments has been studied. Quantitative estimates of H2S fluxes at the water - bottom sediment and O2-H2S interfaces have been done. Features of H2S oxidation have been studied, its budget in the Black Sea has been calculated. Multiyear spatial-temporal variability of the oxic-anoxic interface has been investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wet bulk density is one of the most important parameters of the physical and geological properties of marine sediments. The density is connected directly with sedimentation history and a few sedirnent properties. Knowledge of the fine scale density-depth structure is the base for many model calculations, for both sedimentological and palaeoclimatic research. A density measurement system was designed and built at the Alfred Wegener Institute in Bremerhaven for measuring the wet buk density of sediment cores with high resolution in a non-destructive way. The density is deterrnined by measuring the absorption of Gamma-rays in the sediment. This principle has been used since the 50's in materials research and in the geosciences. In the present case, Cs137 is used as the radioactive source and the intensity is measured by a detector system (scintillator and photomultiplier). Density values are obtainable in both longitudinal core sections and planar cross-sections (the latter are a function of the axial rotation angle). Special studies on inhomogenity can be applied with core rotation. Detection of ice rafted debris (IRD) is made possible with this option. The processes that run the density measurement system are computer controlled. Besides the absorption measurement the core diameter at every measurement point is determined with a potentiometric system. The data values taken are stored on a personal computer. Before starting routine measurements on the sediment cores, a few experiments conceming the statistical aspects of the gamma-ray signal and its accuracy were carried out. These experiments led to such things as the optimum operational parameters. A high spatial resolution in the mm-range is possible with the 4mm-thin gamma-ray measurements. Within five seconds the wet bulk density can be deterrnined with an absolute accuracy of 1%. A comparison between data measured with the new system and conventional measurements on core samples after core splitting shows an agreement within +I- 5% for most of the values. For this thesis, density determinations were carried out on ten sediment cores. A few sediment characteristics are obtainable from using just the standard measurement results without core rotation. In addition to differentes and steps in the absolute density range, variations in the "frequency" of the density-depth structure can be detected due to the close spatial measurement interval and high resolution. Examples from measurements with small (9°) and great (90°) angle increments show that abrupt and smooth transitional changes of sedirnent layers as well as ice rafted debris of several dimensions can be detected and distiflguished clearly. After the presentation of the wet bulk density results, a comparison with data from other investigations was made. Measurements of the electrical resistivity correlated very well with the density data because both parameters are closely related to the porosity of the sedirnent. Additionally, results from measurements of the magnetic susceptibility and from ultra-sonic wave velocity investigations were considered for a integrative interpretation. The correlation of these both parameters and wet bulk density data is strongly dependent on the local (environmental) conditions. Finally, the densities were compared with recordings from sediment-echographic soundings and an X-ray computer tomography analysis. The individual results of all investigations were then finally combined into an accurate picture of the core. Problems of ambiguity, which exist when just one Parameter is determined alone, can be reduced more or less according to the number of parameters and sedimentary characteristics measured. The important role of the density data among other parameters of such an integrated interpretation is evident. Evidence of this role include the high resolution of the measurement, the excellent accuracy and the key position within methods and parameters concerning marine sediments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable isotopic and minor element compositions were measured on the fine fraction of pelagic carbonate sediments from Ocean Drilling Program Site 709 in the central Indian Ocean. This section ranges in age from 47 Ma to the present. The observed compositional variations are the result of either paleoceanographic changes (past oceanic chemical or temperature variations) or diagenetic changes. The CaCO3 record is little affected by diagenesis. From previous work, carbonate content is known to be determined by the interplay of biological productivity, water column dissolution, and dilution. The carbon isotopic record is generally similar to previously published curves. A good correlation was observed between sea-level high stands and high 13C/12C ratios. This supports Shackleton's hypothesis that as the proportion of organic carbon buried in marine sediments becomes larger, oceanic-dissolved inorganic carbon becomes isotopically heavier. This proportion appears to be higher when sea level is higher and organic carbon is buried in more extensive shallow-shelf sediments. The strontium content and oxygen isotopic composition of carbonate sediments are much more affected by burial diagenesis. Low strontium concentrations are invariably associated with high values of d18O, probably indicating zones of greater carbonate recrystallization. Nevertheless, there is an inverse correlation between strontium concentration and sea level that is thought to be a result of high-strontium aragonitic sedimentation on shallow banks and shelves during high stands. Iron and manganese concentrations and, to a lesser extent, magnesium and strontium concentrations and carbon isotopic ratios are affected by early diagenetic reactions. These reactions are best observed in a slumped interval of sediments that occurs between 13.0 and 17.5 Ma. As a result of microbial reduction of manganese and iron oxides and dissolved sulfate, it is hypothesized that small amounts of mixed-metal carbonate cements are precipitated. These have low carbon isotopic ratios and high concentrations of metals.