14 resultados para ARNr 18S

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Zooplankton play an important role in our oceans, in biogeochemical cycling and providing a food source for commercially important fish larvae. However, difficulties in correctly identifying zooplankton hinder our understanding of their roles in marine ecosystem functioning, and can prevent detection of long term changes in their community structure. The advent of massively parallel Next Generation Sequencing technology allows DNA sequence data to be recovered directly from whole community samples. Here we assess the ability of such sequencing to quantify the richness and diversity of a mixed zooplankton assemblage from a productive monitoring site in the Western English Channel. Methodology/Principle Findings: Plankton WP2 replicate net hauls (200 µm) were taken at the Western Channel Observatory long-term monitoring station L4 in September 2010 and January 2011. These samples were analysed by microscopy and metagenetic analysis of the 18S nuclear small subunit ribosomal RNA gene using the 454 pyrosequencing platform. Following quality control a total of 419,042 sequences were obtained for all samples. The sequences clustered in to 205 operational taxonomic units using a 97% similarity cut-off. Allocation of taxonomy by comparison with the National Centre for Biotechnology Information database identified 138 OTUs to species level, 11 to genus level and 1 to order, <2.5% of sequences were classified as unknowns. By comparison a skilled microscopic analyst was able to routinely enumerate only 75 taxonomic groups. Conclusions: The percentage of OTUs assigned to major eukaryotic taxonomic groups broadly aligns between the metagenetic and morphological analysis and are dominated by Copepoda. However, the metagenetics reveals a previously hidden taxonomic richness, especially for Copepoda and meroplankton such as Bivalvia, Gastropoda and Polychaeta. It also reveals rare species and parasites. We conclude that Next Generation Sequencing of 18S amplicons is a powerful tool for estimating diversity and species richness of zooplankton communities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Distribution of ammonium, nitrite and nitrate nitrogen is examined in a section along 65-67°E between 18°S and 23°N during the transition period from winter to summer monsoons. It is shown that, under conditions of very large oxygen deficit in the 200-400 m layer, denitrification process results in formation of the second deep-sea maximum of nitrites and the intermediate minimum of nitrate nitrogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first record of Antipathella subpinnata ( Ellis and Solander, 1786) for the Azores archipelago is presented based on bottom longline by-catch analysis and ROV seafloor surveys, extending the species western-most boundary of distribution in the NE Atlantic. The species was determined using classic taxonomy and molecular analysis targeting nuclear DNA. Although maximum spine height on Azorean colonies branchlets is slightly smaller than that reported from Mediterranean colonies (0.12 vs 0.16 mm), the analysis of partial 18S rDNA, complete ITS1, 5.8S, ITS2 and partial 28S rDNA suggests that the Azorean and Mediterranean specimens belong to the same species. Video surveys of an A. subpinnata garden detected near Pico Island are used to provide the first in situ description of the species habitat in the region and the first detailed description of a black coral garden in the NE Atlantic. With A. subpinnata being the only coral found between 150 and 196 m depths, this is the deepest black coral garden recorded in the NE Atlantic and the first one to be monospecific. The species exhibited a maximum density of 2.64 colonies/m**2 and occurred across a surface area estimated at 67,333 m**2, yielding a local population estimate of 50,500 colonies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seagrass meadows are a crucial component of tropical marine reef ecosystems. The seagrass plants are colonized by a multitude of epiphytic organisms that contribute to determining the ecological role of seagrasses. To better understand how environmental changes like ocean acidification might affect epiphytic assemblages, the microbial community composition of the epiphytic biofilm of Enhalus acroides was investigated at a natural CO2 vent in Papua New Guinea using molecular fingerprinting and next generation sequencing of 16S and 18S rRNA genes. Both bacterial and eukaryotic epiphytes formed distinct communities at the CO2-impacted site compared to the control site. This site-related CO2 effect was also visible in the succession pattern of microbial epiphytes. We further found an increased abundance of bacterial types associated with coral diseases at the CO2-impacted site (Fusobacteria, Thalassomonas) whereas eukaryotes such as certain crustose coralline algae commonly related to healthy reefs were less diverse. These trends in the epiphytic community of E. acroides suggest a potential role of seagrasses as vectors of coral pathogens and may support previous predictions of a decrease in reef health and prevalence of diseases under future ocean acidification scenarios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Characteristic remanent magnetizations derived from detailed thermal and alternating-field demagnetization of basalts recovered at Ocean Drilling Program (ODP) Site 807 on the Ontong Java Plateau reveal constant normal polarity consistent with paleontological ages from overlying sediments, suggesting deposition in early Aptian times at the beginning of the Cretaceous Normal Polarity Superchron (K-N). The paleomagnetic data can be divided into 14 distinct inclination groups, which together define a paleolatitude of 18°S, some 16° shallower than expected from a Pacific apparent polar wander path (APWP) based on nonsedimentary data. The data display a trend in paleomagnetic inclination, showing shallower values with increasing depth. We conclude that this trend is a result of local tectonic tilting during the waning phases of volcanism on the plateau. Hotspot-based plate reconstructions for the Early Cretaceous place the Ontong Java Plateau on the Louisville hotspot, presently located at 51°S, whereas the paleolatitude for Site 807 based on the Pacific APWP is 34°S. Because the nominal mean inclination from Site 807 and values derived from Deep Sea Drilling Project (DSDP) sediments of other sites predict shallower paleolatitudes for the Ontong Java Plateau, values from the Pacific APWP provide lower bounds on true polar wander. Considering mantle plume sources on the southern and northern portions of the plateau (DSDP Site 288 and ODP Site 807, respectively), the Louisville hotspot appears to have moved 9°-17° to the south relative to the spin axis since the Early Cretaceous. This sense of motion is consistent with previous results for the Suiko Seamount (65 Ma) of the Hawaiian-Emperor Chain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The monograph includes the study of chemical and mineral compositions of terrestrial and marine manganese ores, methods of their analysis, dependence of manganese crust geochemistry on tectonic position of their formation, problems of manganese genesis and sources of manganese in ocean ores in connection with geohistorical aspects of ocean formation and development. A hypothesis is offered that formation of giant manganese mineral basins on continental margins resulted from a large asteroid fall to the ocean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present new nitrogen isotope data from the water column and surface sediments for paleo-proxy validation collected along the Peruvian and Ecuadorian margins between 1°N and 18°S. Productivity proxies in the bulk sediment (organic carbon, total nitrogen, biogenic opal, C37 alkenone concentrations) and 15N/14N ratios were measured at more than 80 locations within and outside the present-day Peruvian oxygen minimum zone (OMZ). Microbial N-loss to N2 in subsurface waters under O2 deficient conditions leaves a characteristic 15N-enriched signal in underlying sediments. We find that phytoplankton nutrient uptake in surface waters within the high nutrient, low chlorophyll (HNLC) regions of the Peruvian upwelling system influences the sedimentary signal as well. How the d15Nsed signal is linked to these processes is studied by comparing core-top values to the 15N/14N of nitrate and nitrite (d15N[NOx]) in the upper 200 m of the water column. Between 1°N and 10°S, subsurface O2 is still high enough to suppress N-loss keeping d15NNOx values relatively low in the subsurface waters. However d15N[NOx] values increase toward the surface due to partial nitrate utilization in the photic zone in this HNLC portion of the system. d15N[sed] is consistently lower than the isotopic signature of upwelled [NO3]-, likely due to the corresponding production of 15N depleted organic matter. Between 10°S and 15°S, the current position of perennial upwelling cells, HNLC conditions are relaxed and biological production and near-surface phytoplankton uptake of upwelled [NO3]- are most intense. In addition, subsurface O2 concentration decreases to levels sufficient for N-loss by denitrification and/or anammox, resulting in elevated subsurface d15N[NOx] values in the source waters for coastal upwelling. Increasingly higher production southward is reflected by various productivity proxies in the sediments, while the north-south gradient towards stronger surface [NO3]- utilization and subsurface N-loss is reflected in the surface sediment 15N/14N ratios. South of 10°S, d15N[sed] is lower than maximum water column d15N[NOx] values most likely because only a portion of the upwelled water originates from the depths where highest d15N[NOx] values prevail. Though the enrichment of d15N[NOx] in the subsurface waters is unambiguously reflected in d15N[sed] values, the magnitude of d15N[sed] enrichment depends on both the depth of upwelled waters and high subsurface d15N[NOx] values produce by N-loss. Overall, the degree of N-loss influencing subsurface d15N[NOx] values, the depth origin of upwelled waters, and the degree of near-surface nitrate utilization under HNLC conditions should be considered for the interpretation of paleo d15N[sed] records from the Peruvian oxygen minimum zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on our current knowledge about population genetics, phylogeography and speciation, we begin to understand that the deep sea harbours more species than suggested in the past. Deep-sea soft-sediment environment in particular hosts a diverse and highly endemic invertebrate fauna. Very little is known about evolutionary processes that generate this remarkable species richness, the genetic variability and spatial distribution of deep-sea animals. In this study, phylogeographic patterns and the genetic variability among eight populations of the abundant and widespread deep-sea isopod morphospecies Betamorpha fusiformis [Barnard, K.H., 1920. Contributions to the crustacean fauna of South Africa. 6. Further additions to the list of marine isopods. Annals of the South African Museum 17, 319-438] were examined. A fragment of the mitochondrial 16S rRNA gene of 50 specimens and the complete nuclear 18S rRNA gene of 7 specimens were sequenced. The molecular data reveal high levels of genetic variability of both genes between populations, giving evidence for distinct monophyletic groups of haplotypes with average p-distances ranging from 0.0470 to 0.1440 (d-distances: 0.0592-0.2850) of the 16S rDNA, and 18S rDNA p-distances ranging between 0.0032 and 0.0174 (d-distances: 0.0033-0.0195). Intermediate values are absent. Our results show that widely distributed benthic deep-sea organisms of a homogeneous phenotype can be differentiated into genetically highly divergent populations. Sympatry of some genotypes indicates the existence of cryptic speciation. Flocks of closely related but genetically distinct species probably exist in other widespread benthic deep-sea asellotes and other Peracarida. Based on existing data we hypothesize that many widespread morphospecies are complexes of cryptic biological species (patchwork hypothesis).