14 resultados para ANAEROBIC BIODIGESTER
em Publishing Network for Geoscientific
Resumo:
Anaerobic methane-oxidizing microbial communities in sediments at cold methane seeps are important factors in controlling methane emission to the ocean and atmosphere. Here, we investigated the distribution and carbon isotopic signature of specific biomarkers derived from anaerobic methanotrophic archaea (ANME groups) and sulphate-reducing bacteria (SRB) responsible for the anaerobic oxidation of methane (AOM) at different cold seep provinces of Hydrate Ridge, Cascadia margin. The special focus was on their relation to in situ cell abundances and methane turnover. In general, maxima in biomarker abundances and minima in carbon isotope signatures correlated with maxima in AOM and sulphate reduction as well as with consortium biomass. We found ANME-2a/DSS aggregates associated with high abundances of sn-2,3-di-O-isoprenoidal glycerol ethers (archaeol, sn-2-hydroxyarchaeol) and specific bacterial fatty acids (C16:1omega5c, cyC17:0omega5,6) as well as with high methane fluxes (Beggiatoa site). The low to medium flux site (Calyptogena field) was dominated by ANME-2c/DSS aggregates and contained less of both compound classes but more of AOM-related glycerol dialkyl glycerol tetraethers (GDGTs). ANME-1 archaea dominated deeper sediment horizons at the Calyptogena field where sn-1,2-di-O-alkyl glycerol ethers (DAGEs), archaeol, methyl-branched fatty acids (ai-C15:0, i-C16:0, ai-C17:0), and diagnostic GDGTs were prevailing. AOM-specific bacterial and archaeal biomarkers in these sediment strata generally revealed very similar d13C-values of around -100 per mill. In ANME-2-dominated sediment sections, archaeal biomarkers were even more 13C-depleted (down to -120 per mill), whereas bacterial biomarkers were found to be likewise 13C-depleted as in ANME-1-dominated sediment layers (d13C: -100 per mill). The zero flux site (Acharax field), containing only a few numbers of ANME-2/DSS aggregates, however, provided no specific biomarker pattern. Deeper sediment sections (below 20 cm sediment depth) from Beggiatoa covered areas which included solid layers of methane gas hydrates contained ANME-2/DSS typical biomarkers showing subsurface peaks combined with negative shifts in carbon isotopic compositions. The maxima were detected just above the hydrate layers, indicating that methane stored in the hydrates may be available for the microbial community. The observed variations in biomarker abundances and 13C-depletions are indicative of multiple environmental and physiological factors selecting for different AOM consortia (ANME-2a/DSS, ANME-2c/DSS, ANME-1) along horizontal and vertical gradients of cold seep settings.
Resumo:
The giant pockmark REGAB (West African margin, 3160 m water depth) is an active methane-emitting cold seep ecosystem, where the energy derived from microbially mediated oxidation of methane supports high biomass and diversity of chemosynthetic communities. Bare sediments interspersed with heterogeneous chemosynthetic assemblages of mytilid mussels, vesicomyid clams and siboglinid tubeworms form a complex seep ecosystem. To better understand if benthic bacterial communities reflect the patchy distribution of chemosynthetic fauna, all major chemosynthetic habitats at REGAB were investigated using an interdisciplinary approach combining porewater geochemistry, in situ quantification of fluxes and consumption of methane, as well bacterial community fingerprinting. This study revealed that sediments populated by different fauna assemblages show distinct biogeochemical activities and are associated with distinct sediment bacterial communities. The methane consumption and methane effluxes ranged over one to two orders of magnitude across habitats, and reached highest values at the mussel habitat, which hosted a different bacterial community compared to the other habitats. Clam assemblages had a profound impact on the sediment geochemistry, but less so on the bacterial community structure. Moreover, all clam assemblages at REGAB were restricted to sediments characterized by complete methane consumption in the seafloor, and intermediate biogeochemical activity. Overall, variations in the sediment geochemistry were reflected in the distribution of both fauna and microbial communities; and were mostly determined by methane flux.
Resumo:
First videographic indication of an Antarctic cold seep ecosystem was recently obtained from the collapsed Larsen B ice shelf, western Weddell Sea (Domack et al., 2005). Within the framework of the R/V Polarstern expedition ANTXXIII-8, we revisited this area for geochemical, microbiological and further videographical examinations. During two dives with ROV Cherokee (MARUM, Bremen), several bivalve shell agglomerations of the seep-associated, chemosynthetic clam Calyptogena sp. were found in the trough of the Crane and Evans glacier. The absence of living clam specimens indicates that the flux of sulphide and hence the seepage activity is diminished at present. This impression was further substantiated by our geochemical observations. Concentrations of thermogenic methane were moderately elevated with 2 µM in surface sediments of a clam patch, increasing up to 9 µM at a sediment depth of about 1 m in the bottom sections of the sediment cores. This correlated with a moderate decrease in sulphate from about 28 mM at the surface down to 23.4 mM, an increase in sulphide to up to 1.43 mM and elevated rates of the anaerobic oxidation of methane (AOM) of up to 600 pmol cm**-3 d**-1 at about 1 m below the seafloor. Molecular analyses indicate that methanotrophic archaea related to ANME-3 are the most likely candidates mediating AOM in sediments of the Larsen B seep.
Resumo:
The anaerobic oxidation of methane (AOM) with sulfate as terminal electron acceptor is mediated by consortia of methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). In sediment samples from Hydrate Ridge, the Isis Mud Volcano and the Gulf of Mexico, DSS cells accounted for 3-6% of all DAPI-stained single cells. Out of these, 8-17% were labelled with probe SEEP1a-1441. This translated into relative abundances of single SEEP-SRB1a cells of 0.3% to 0.7%. Contrastingly, in a sediment sample from the Gullfaks oil field, DSS cells accounted for 18% and SEEP-SRB1a for 9% of all single cells. This sediment sample also featured an unusually high abundance of single ANME-2 cells and only very few ANME-2/DSS aggregates in comparison with other AOM habitats. Considering also the nature of the sample, it is likely that the high number of single ANME-2 and SEEP-SRB1a cells were an artifact of sample preparation. Here, harsher sonication was required to remove the microorganisms from coarse sand prior to CARD-FISH analysis.
Resumo:
The microbially mediated anaerobic oxidation of methane (AOM) is the major biological sink of the greenhouse gas methane in marine sediments (doi:10.1007/978-94-009-0213-8_44) and serves as an important control for emission of methane into the hydrosphere. The AOM metabolic process is assumed to be a reversal of methanogenesis coupled to the reduction of sulfate to sulfide involving methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB) as syntrophic partners which were describes amongst others in Boetius et al. (2000; doi:10.1038/35036572). In this study, 16S rRNA-based methods were used to investigate the distribution and biomass of archaea in samples from sediments above outcropping methane hydrate at Hydrate Ridge (Cascadia margin off Oregon) and (ii) massive microbial mats enclosing carbonate reefs (Crimea area, Black Sea). Sediment samples from Hydrate Ridge were obtained during R/V SONNE cruises SO143-2 in August 1999 and SO148-1 in August 2000 at the crest of southern Hydrate Ridge at the Cascadia convergent margin off the coast of Oregon. The second study area is located in the Black Sea and represents a field in which there is active seepage of free gas on the slope of the northwestern Crimea area. Here, a field of conspicuous microbial reefs forming chimney-like structures was discovered at a water depth of 230 m in anoxic waters. The microbial mats were sampled by using the manned submersible JAGO during the R/V Prof. LOGACHEV cruise in July 2001. At Hydrate Ridge the surface sediments were dominated by aggregates consisting of ANME-2 and members of the Desulfosarcina-Desulfococcus branch (DSS) (ANME-2/DSS aggregates), which accounted for >90% of the total cell biomass. The numbers of ANME-1 cells increased strongly with depth; these cells accounted 1% of all single cells at the surface and more than 30% of all single cells (5% of the total cells) in 7- to 10-cm sediment horizons that were directly above layers of gas hydrate. In the Black Sea microbial mats ANME-1 accounted for about 50% of all cells. ANME-2/DSS aggregates occurred in microenvironments within the mat but accounted for only 1% of the total cells. FISH probes for the ANME-2a and ANME-2c subclusters were designed based on a comparative 16S rRNA analysis. In Hydrate Ridge sediments ANME-2a/DSS and ANME-2c/DSS aggregates differed significantly in morphology and abundance. The relative abundance values for these subgroups were remarkably different at Beggiatoa sites (80% ANME-2a, 20% ANME-2c) and Calyptogena sites (20% ANME-2a, 80% ANME-2c), indicating that there was preferential selection of the groups in the two habitats.