30 resultados para AMBLYOMMA-PARVUM ACARI

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extreme weather events can have negative impacts on species survival and community structure when surpassing lethal thresholds. Extreme winter warming events in the Arctic rapidly melt snow and expose ecosystems to unseasonably warm air (2-10 °C for 2-14 days), but returning to cold winter climate exposes the ecosystem to lower temperatures by the loss of insulating snow. Soil animals, which play an integral part in soil processes, may be very susceptible to such events depending on the intensity of soil warming and low temperatures following these events. We simulated week-long extreme winter warming events - using infrared heating lamps, alone or with soil warming cables - for two consecutive years in a sub-Arctic dwarf shrub heathland. Minimum temperatures were lower and freeze-thaw cycles were 2-11 times more frequent in treatment plots compared with control plots. Following the second event, Acari populations decreased by 39%; primarily driven by declines of Prostigmata (69%) and the Mesostigmatic nymphs (74%). A community-weighted vertical stratification shift occurred from smaller soil dwelling (eu-edaphic) Collembola species dominance to larger litter dwelling (hemi-edaphic) species dominance in the canopy-with-soil warming plots compared with controls. The most susceptible groups to these winter warming events were the smallest individuals (Prostigmata and eu-edaphic Collembola). This was not apparent from abundance data at the Collembola taxon level, indicating that life forms and species traits play a major role in community assembly following extreme events. The observed shift in soil community can cascade down to the micro-flora affecting plant productivity and mineralization rates. Short-term extreme weather events have the potential to shift community composition through trait composition with potentially large consequences for ecosystem development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil fauna in the extreme conditions of Antarctica consists of a few microinvertebrate species patchily distributed at different spatial scales. Populations of the prostigmatic mite Stereotydeus belli and the collembolan Gressittacantha terranova from northern Victoria Land (Antarctica) were used as models to study the effect of soil properties on microarthropod distributions. In agreement with the general assumption that the development and distribution of life in these ecosystems is mainly controlled by abiotic factors, we found that the probability of occurrence of S. belli depends on soil moisture and texture and on the sampling period (which affects the general availability of water); surprisingly, none of the analysed variables were significantly related to the G. terranova distribution. Based on our results and literature data, we propose a theoretical model that introduces biotic interactions among the major factors driving the local distribution of collembolans in Antarctic terrestrial ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At present time, there is a lack of knowledge on the interannual climate-related variability of zooplankton communities of the tropical Atlantic, central Mediterranean Sea, Caspian Sea, and Aral Sea, due to the absence of appropriate databases. In the mid latitudes, the North Atlantic Oscillation (NAO) is the dominant mode of atmospheric fluctuations over eastern North America, the northern Atlantic Ocean and Europe. Therefore, one of the issues that need to be addressed through data synthesis is the evaluation of interannual patterns in species abundance and species diversity over these regions in regard to the NAO. The database has been used to investigate the ecological role of the NAO in interannual variations of mesozooplankton abundance and biomass along the zonal array of the NAO influence. Basic approach to the proposed research involved: (1) development of co-operation between experts and data holders in Ukraine, Russia, Kazakhstan, Azerbaijan, UK, and USA to rescue and compile the oceanographic data sets and release them on CD-ROM, (2) organization and compilation of a database based on FSU cruises to the above regions, (3) analysis of the basin-scale interannual variability of the zooplankton species abundance, biomass, and species diversity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over a 2-year study, we investigated the effect of environmental change on the diversity and abundance of soil arthropod communities (Acari and Collembola) in the Maritime Antarctic and the Falkland Islands. Open Top Chambers (OTCs), as used extensively in the framework of the northern boreal International Tundra Experiment (ITEX), were used to increase the temperature in contrasting communities on three islands along a latitudinal temperature gradient, ranging from the Falkland Islands (51°S, mean annual temperature 7.5 °C) to Signy Island (60°S, -2.3°C) and Anchorage Island (67°S, -3.8°C). At each island an open and a closed plant community were studied: lichen vs. moss at the Antarctic sites, and grass vs. dwarf shrub at the Falkland Islands. The OTCs raised the soil surface temperature during most months of the year. During the summer the level of warming achieved was 1.7 °C at the Falkland Islands, 0.7 °C at Signy Island, and 1.1 °C at Anchorage Island. The native arthropod community diversity decreased with increasing latitude. In contrast with this pattern, Collembola abundance in the closed vegetation (dwarf shrub or moss) communities increased by at least an order of magnitude from the Falkland Islands (9.0 +/- 2 x 10**3 ind./m**2) to Signy (3.3 +/- 8.0 x 10**4 ind./m**2) and Anchorage Island (3.1 +/- 0.82 x 10**5 ind./m**2). The abundance of Acari did not show a latitudinal trend. Abundance and diversity of Acari and Collembola were unaffected by the warming treatment on the Falkland Islands and Anchorage Island. However, after two seasons of experimental warming, the total abundance of Collembola decreased (p < 0.05) in the lichen community on Signy Island as a result of the population decline of the isotomid Cryptopygus antarcticus. In the same lichen community there was also a decline (p < 0.05) of the mesostigmatid predatory mite Gamasellus racovitzai, and a significant increase in the total number of Prostigmata. Overall, our data suggest that the consequences of an experimental temperature increase of 1-2°C, comparable to the magnitude currently seen through recent climate change in the Antarctic Peninsula region, on soil arthropod communities in this region may not be similar for each location but is most likely to be small and initially slow to develop.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Meiobenthos densities and higher taxon composition were studied in an active gas seepage area at depths from 182 to 252 m in the submarine Dnieper Canyon located in the northwestern part of the Black Sea. The meiobenthos was represented by Ciliata, Foraminifera, Nematoda, Polychaeta, Bivalvia, Gastropoda, Amphipoda, and Acarina. Also present in the sediment samples were juvenile stages of Copepoda and Cladocera which may be of planktonic origin. Nematoda and Foraminifera were the dominant groups. The abundance of the meiobenthos varied between 2397 and 52593 Ind./m**2. Maximum densities of Nematoda and Foraminifera were recorded in the upper sediment layer of a permanent H2S zone at depths from 220 to 250 m. This dense concentration of meiobenthos was found in an area where intense methane seeps were covered by methane-oxidizing microbial mats. Results suggest that methane and its microbial oxidation products are the factors responsible for the presence of a highly sulfidic and biologically productive zone characterized by specially adapted benthic groups. At the same time, an inverse correlation was found between meiofauna densities and methane concentrations in the uppermost sediment layers. The hypothesis is that the concentration of Nematoda and Foraminifera within the areas enriched with methane is an ecological compromise between the food requirements of these organisms and their adaptations to the toxic H2S.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At Ocean Drilling Program Hole 748C in the Southern Indian Ocean, a total of 171 Late Cretaceous dinoflagellate taxa were encountered in 38 productive samples from Cores 120-748C-27R through 120-748C-62R (407-740 mbsf). Four provisional dinoflagellate assemblage zones and five subzones were recognized based on the character of the dinoflagellate flora and the first/last occurrences of some key species. Isabelidinium korojonense and Nelsoniella aceras occur in Zone A together with Oligosphaeridium pulcherrimum and Trithyrodinium suspect urn. Zone B was delineated by the total range of Odontochitina cribropoda. Zone C was separated from Zone B by the presence of Satyrodinium haumuriense, and Zone D is dominated by new taxa. The dinocyst assemblages bear a strong affinity to Australian assemblages. Paleoenvironmental interpretations based mainly on dinocysts suggest that during the ?Santonian-Campanian to the Maestrichtian this portion of the Kerguelen Plateau was a shallow submerged plateau, similar to nearshore to offshore to upper slope environments with water depths of tens to hundreds of meters, but isolated from the major continents of the Southern Hemisphere. Starting perhaps in the late Cenomanian (Mohr and Gee, 1992, doi:10.2973/odp.proc.sr.120.196.1992), the Late Cretaceous transgression over the plateau reached its maximum during the late Campanian. The plateau may have been exposed above sea level and subjected to weathering during the latest Maestrichtian. The studied dinocyst assemblages characterized by species of Amphidiadema, Nelsoniella, Satyrodinium, and Xenikoon together with abundant Chatangiella (the large-size species) and Isabelidinium suggest that a South Indian Province (tentatively named the Helby suite) may have existed during the Campanian-Maestrichtian in comparison with the other four provinces of Lentin and Williams. One new genus, three new species, and two new subspecies of dinocysts are described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Palynological studies of the intrabasaltic sediment layers in the lower volcanic series from ODP Leg 104 outer Voring Plateau Hole 642E Cores 102 through 109 indicated abundant pollen and rarer dinoflagellate cysts. The dinoflagellates belong to the Apectodinium hyperacanthum Zone and indicate an age equivalent to nannoplankton Zones NP9-lower NP10 around the Paleocene/Eocene boundary. The pollen and spore assemblage found here in 12 of the samples from the lower volcanic series is of well- preserved and distinctive specimens and contains unusual forms of pollen from the Taxodiaceae and the Hamamelidae. It has not been transported far from vegetation that was dominated by conifer forest with some ferns and deciduous arborescent angiosperms. Nearly identical assemblages are found elsewhere in the Brito-Arctic Igneous Province, in intrabasaltic sediments from eastern Greenland, the Faeroe Islands, the Isle of Mull, and Antrim (Northern Ireland), and above basalt at the Rockall Plateau. The assemblage is also present in sediments around the Paleocene/Eocene boundary in Spitsbergen. This pollen and spore flora is also associated with dinoflagellate cysts of the Apectodinium hyperacanthum Zone in the deposits from eastern Greenland, the Rockall Plateau, and Spitsbergen, suggesting that these are correlative. Assemblages of the same age from the North Sea, Denmark, and the London and Paris Basins are different. Paleobotanical evidence suggests a short survival of the intrabasaltic flora, and that all the deposits considered here are of about the same age. We propose that at around the Paleocene/Eocene boundary a distinct flora, named here as the Brito-Arctic Igneous Province (BIP) flora, occurred on the line of volcanicity stretching from Rockall to the Greenland Sea, and even to Spitsbergen. Geophysical evidence supports our view that the Rockall to East Greenland intrabasaltics are more or less contemporaneous, at about the Paleocene/Eocene boundary. However, the comparable pollen and spore assemblage in the Hebridean province, at Mull and Antrim, is from pyroclastics that may be a little older.