11 resultados para A. guerichi
em Publishing Network for Geoscientific
Resumo:
The Ratekau boring ended in clays of the so-called Asterigerina-Zone; these clays have shallow-water features in the uppermost samples. The clays are overlain by deep-water clays with pteropods; this formation is split into two parts by a shallow-water deposit. The fossiliferous series ends upward in sandy deposits with shallow-water fossils. The question is raised whether the two deep-water deposits might correspond to the Lower Doberg Beds (Eochattian) and the Upper Doberg Beds (Neochattian) at the Doberg hill, closer to the rim of the basin. All fossiliferous samples from this boring are thought to be of Late Oligocene age; the boundary towards the Middle Oligocene, however, could not be ascertained. The Vaale boring ended in rather typical Septaria clay of the Middle Oligocene. This clay is capped by some metres of unfossiliferous glauconite clays, which in turn are overlain by silts and silty clays with planktonic fossils identical to those found at Dingden locality. These deposits are tentatively dated as Early Miocene. The next higher series of samples consists of sands and clays deposited in shallower waters. They contain a rich fauna of benthic molluscs, which, according to the current notion in stratigraphy, would have a Reinbek Age. In addition, they contain a set of planktonic fossils which differs from the 'Lower Miocene' assemblages. These sands and clays are overlain by a thick series of marine sands very poor in fossils. Finally, four metres of clay with foraminifera, having Younger Miocene affinities, form the top of the fossiliferous sequence. The borings at Wulksfelde and Langenhorn were not far apart and their sediments are easily correlated. Both wells start below in continental 'Lignite Sands' and contain overlying shallow water sands and clays. These yielded Hemmoor benthic mollusca, supposed to indicate Lower Miocene in the relevant literature; however, we encountered their planktonic foraminifera in the uppermost Miocene as well. The same planktonic species were found in all samples of both borings. These deposits under discussion furthermore contain a particular pteropod species. They are overlain by a thick series of gypsiferous clays, with scarce fossils. The uppermost fossiliferous clays (probably Langenfelde Age) contain another pteropod species, not met with in other samples. The discrepancies between the plankton zonation and the traditional subdivision according to benthic molluscs in the borings of Vaale, Wulksfelde and Langenhorn (and in samples from Twistringen, Dingden and Antwerp localities as well) renders the time-stratigraphic value of the denominations Reinbek and Hemmoor rather doubtful. The samples of the Westerland boring can be placed in the Gram and Sylt stages of local chronostratigraphy on the strength of the Astarte series established by HINSCH. The Gram samples contain a typical pteropod species; both groups of samples contain the same planktonic foraminifera as the borings Wulksfelde and Langenhorn. Our material did not bring the problem of the Miocene-Pliocene boundary in this region any closer to a solution. In conclusion, it can be claimed that this investigation provides strong arguments that the usual recognition of Hemmoor and Reinbek does not correspond to well-defined chronostratigraphical units. A better chronostratigraphic subdivision has to be based on the examination of many more samples, and on a better understanding of the paleoecology of the fossils involved.
Resumo:
A study was made of the marine molluscan fauna from 12 borings in the Schwarzenbek area. In the fossil rich facies underlying the 'Braunkohlensande', the Neochatt and Vierland faunal sequences could be described and used to define the Oligocene/Miocene boundary. The Neochatt, defined by Pectinidae, seems to be more closely related to the Miocene than previously thought. Nevertheless, a sufficient number of additional molluscan species are present for placing the Neochatt/Vierland boundary. Overlying the Braunkohlensande, the sandy Reinbek fauna as well as Glimmerton faunas of the Reinbek and Langenfelde stages could be described.
Resumo:
This study presents a new Miocene biostratigraphic synthesis for the high-latitude northeastern North Atlantic region. Via correlations to the bio-magnetostratigraphy and oxygen isotope records of Ocean Drilling Program and Deep Sea Drilling Project Sites, the ages of shallower North Sea deposits have been better constrained. The result has been an improved precision and documentation of the age designations of the existing North Sea foraminiferal zonal boundaries of King (1989) and Gradstein and Bäckström (1996). All calibrations have been updated to the Astronomically Tuned Neogene Time Scale (ATNTS) of Lourens et al. (2004). This improved Miocene biozonation has been achieved through: the updating of age calibrations for key microfossil bioevents, identification of new events, and integration of new biostratigraphic data from a foraminiferal analysis of commercial wells in the North Sea and Norwegian Sea. The new zonation has been successfully applied to two commercial wells and an onshore research borehole. At these high latitudes, where standard zonal markers are often absent, integration of microfossil groups significantly improves temporal resolution. The new zonation comprises 11 Nordic Miocene (NM) Zones with an average duration of 1 to 2 million years. This multi-group combination of a total of 92 bioevents (70 foraminifers and bolboformids; 16 dinoflagellate cysts and acritarchs; 6 marine diatoms) facilitates zonal identification throughout the Nordic Atlantic region. With the highest proportion of events being of calcareous walled microfossils, this zonation is primarily suited to micropaleontologists. A correlation of this Miocene biostratigraphy with a re-calibrated oxygen isotope record for DSDP Site 608 suggests a strong correlation between Miocene planktonic microfossil turnover rates and the inferred paleoclimatic trends. Benthic foraminifera zonal boundaries appear to often coincide with Miocene global sequence boundaries. The biostratigraphic record is punctuated by four main stratigraphic hiati which show variation in their geographic and temporal extent. These are related to the following regional unconformities: basal Neogene, Lower/Middle Miocene ("mid-Miocene unconformity"), basal Upper Miocene and basal Messinian unconformities. Further coring of Neogene sections in the North Sea and Norwegian Sea may better constrain their extent and their effect on the biostratigraphic record.
Resumo:
Vierlandian, Behrendorfian (Lower Hemmoorian), Oxlundian (Upper Hemmoorian), Lower and Upper Reinbekian, Langenfeldian and Gramian stages could be proved by evaluation of marine molluscan faunas. The diachrone base of 'Braunkohlensande' is demonstrated by underlying Vierlandian mica clay in the E, and by Hemmoorian substages more to the W, at last the fluviatile facies is replaced completely by euhaline to brachyhaline sandy to silty sediments. Brachyhaline effects in adjacent environments make possible an approximate dating on fluviatile sedimentation. The widest extension of 'Braunkohlensand' is during upper Oxlundian, whilst slightly brachyhaline Katzheide beds, defined in this paper to be of Lower Reinbekian age, indicate a limit of 'Braunkohlensande' more to the E. Winnert-fauna was found to be a mixture of Oxlundian and Langenfeldian; the overlying lignitic sands belong to the Kaolinsand group. Upper mica clay overlying Miocene Braunkohlensande can be divided into beds of Upper Reinbekian, Langenfeldian and Gramian ages.
Resumo:
Deep-sea benthic foraminiferal faunas were studied from Sites 608 (depth 3534 m, 42°50'N, 23°05'W) and 610 (depth 2427 m, 53°13'N, 18°53'W). The sampling interval corresponded to 0.1 to 0.5 m.y. at Site 608 and in the sections of Site 610 from which core recovery was continuous. First and last appearances of benthic foraminiferal taxa are generally not coeval at the two sites, although the faunal patterns are similar and many species occur at both sites. Major periods of changes in the benthic faunas, as indicated by the numbers of first and last appearances and changes in relative abundances, occurred in the early Miocene (19.2-17 Ma), the middle Miocene (15.5-13.5 Ma), the late Miocene (7-5.5 Ma), and the Pliocene-Pleistocene (3.5-0.7 Ma). A period of minor changes in the middle to late Miocene (10-9 Ma) was recognized at Site 608 only. These periods of faunal changes can be correlated with periods of paleoceanographic changes: there was a period of sluggish circulation in the northeastern North Atlantic from 19.2 to 17 Ma, and the deep waters of the oceans probably cooled between 15.5 and 13.5 Ma, as indicated by an increase in delta18O values in benthic foraminiferal tests. The period between 10 and 9 Ma was probably characterized by relatively vigorous bottom-water circulation in the northeastern Atlantic, as indicated by the presence of a widespread reflector. The faunal change at 7 to 5.5 Ma corresponds in time with a worldwide change in delta13C values, and with the Messinian closing of the Mediterranean. The last and largest faunal changes correspond in time with the onset and intensification of Northern Hemisphere glaciation.