304 resultados para 85-575_Site
em Publishing Network for Geoscientific
Resumo:
We report new data on oxygen isotopes in marine sulfate (delta18O[SO4]), measured in marine barite (BaSO4), over the Cenozoic. The delta18O[SO4] varies by 6x over the Cenozoic, with major peaks 3, 15, 30 and 55 Ma. The delta18O[SO4] does not co-vary with the delta18O[SO4], emphasizing that different processes control the oxygen and sulfur isotopic composition of sulfate. This indicates that temporal changes in the delta18O[SO4] over the Cenozoic must reflect changes in the isotopic fractionation associated with the sulfide reoxidation pathway. This suggests that variations in the aerial extent of different types of organic-rich sediments may have a significant impact on the biogeochemical sulfur cycle and emphasizes that the sulfur cycle is less sensitive to net organic carbon burial than to changes in the conditions of that organic carbon burial. The delta18O[SO4] also does not co-vary with the d18O measured in benthic foraminifera, emphasizing that oxygen isotopes in water and sulfate remain out of equilibrium over the lifetime of sulfate in the ocean. A simple box model was used to explore dynamics of the marine sulfur cycle with respect to both oxygen and sulfur isotopes over the Cenozoic. We interpret variability in the delta18O[SO4] to reflect changes in the aerial distribution of conditions within organic-rich sediments, from periods with more localized, organic-rich sediments, to periods with more diffuse organic carbon burial. While these changes may not impact the net organic carbon burial, they will greatly affect the way that sulfur is processed within organic-rich sediments, impacting the sulfide reoxidation pathway and thus the delta18O[SO4]. Our qualitative interpretation of the record suggests that sulfate concentrations were probably lower earlier in the Cenozoic.
Resumo:
Benthic foraminifers were studied in upper Eocene to Recent core-catcher samples from DSDP Sites 573, 574, and 575. The sites are on a north-south transect from the equator to about 05°N at about 133°W, water depth 4300 to 4600 m. At Site 574 additional samples were used to study the Eocene/Oligocene boundary in detail. About 200 specimens were counted per sample. The fauna is highly diverse (about 50 to 70 species per sample) and is of low dominance. The diversity is not related to age or sub-bottom depth. Many species are cosmopolitan and probably have wide environmental tolerances. Fluctuations in frequency of some taxa (e.g., Nuttallides umbonifera, Epistominella exigua, and Uvigerina spp.) cannot be correlated from one site to another. Several common species (e.g. Oridorsalis umbonatus and Globocassidulina subglobosa) range from late Eocene to Recent. First and last appearances are generally difficult to define precisely because many species are rare. For some species these datums differ from one site to another, but several datum levels are within 1 m.y. at all sites. First and last appearances are most numerous in two intervals, the late Eocene to early Oligocene (about 32 to 37 Ma) and the early to middle Miocene (about 13 to 18.5 Ma). Isotopic events occur within each of these periods of benthic faunal change, but the isotopic events have a shorter duration and start after the initiation of the changes in the fauna. Changes in deep-sea benthic faunal composition are not directly related to short-term oceanographic changes as expressed in isotopic records.
Accompanying wind measurements for bottle data of cruise A7/85 during the MRI-LDEO cooperative study
Resumo:
Chemical and mineralogical compositions of ferromanganese oxide coatings on rocks dredged from the New England Seamounts, the Sierra Leone Rise and the Mid-Atlantic Ridge near the Equator have been determined in an investigation of regional differences in Atlantic ferromanganese deposits. Most encrustations are clearly of hydrogenous origin, consisting mainly of todorokite and delta MnO2, but several recovered from the equatorial fracture zones may be hydrothermal accumulations. Differences in the chemistry of the water column and in growth rates of the ferromanganese coatings may be important in producing this regional contrast in composition. Fine-scale changes in element abundances within the encrustations indicate that the nature of the substrate has little influence on compositional variations.