410 resultados para 846
em Publishing Network for Geoscientific
Resumo:
Oxygen and carbon isotope ratios were measured in benthic foraminifers from the entire Pliocene and latest Miocene sections of Site 846, a 180-m section, at a sampling interval of 10 cm. This provides a temporal resolution of about 2500 yr. The documented continuity of the record is excellent. Using the time scale that was developed on the basis of orbital tuning of GRAPE density records, we observed a fairly constant phase relationship between delta18O and variations in the obliquity of Earth's rotational axis. A new numbering scheme for Pliocene isotope stages is proposed. This high-resolution delta18O record clarifies several interesting aspects of late Neogene climatic evolution, including a "glacial" event that may have caused the final Messinian desiccation of the Mediterranean Sea; one or more "interglacial" events that might have caused refilling of the Mediterranean; a well-resolved couplet of glacial events at about the age of the Sidujfall Subchron; interglacial extremes in the early part of the Gauss that could have resulted from either significant deglaciation on Antarctica or from warming of deep water; and a gradual ramp of increasingly extreme "glacial" events, starting at about the Kaena Subchron and culminating with delta18O stage 100 in the earliest Matuyama.
Resumo:
A stable-isotope stratigraphy at Site 846 (tropical Pacific, 3°06'S, 90°49'W, 3307 m water depth), based on the benthic foraminifers Cibicides wuellerstorfi and Uvigerina peregrina, yields a high-resolution record of deep-sea delta18O and delta13C over the past 1.8 Ma, with an average sampling interval of 3 k.y. Variance in the delta18O and delta13C records is concentrated in the well-known orbital periods of 100, 41, and 23 k.y. In the 100-k.y. band, both isotopic signals grow from relatively low amplitudes prior to 1.2 Ma, to high amplitudes in the late Quaternary since 0.7 Ma. The amplitude of delta18O and especially of delta13C decreases in the 41-k.y. band as it grows in the 100-k.y. band, consistent with a transfer of energy into an orbitally-paced internal oscillation. A weak 30-k.y. rhythm, present in both delta18O and delta13C, may reflect nonlinear interaction between the 41-k.y. and 100-k.y. bands in the evolving climate system. In the 23-k.y. and 19-k.y. bands associated with orbital precession, delta18O and delta13C are not coherent with each other on long time scales, and do not evolve like the 100-k.y. and 41-k.y. bands. This suggests that the source of the growing 100-k.y. oscillation is not a nonlinear response to precession, in contrast to predictions of some climate models. Sedimentation rates at this site also vary with a strong 100-k.y. cycle. Unlike the isotope records, the amplitude of 100-k.y. variations in sedimentation rate is relatively constant over the past 1.8 Ma, ranging from about 15 to 70 m/m.y. Prior to 0.9 Ma, sedimentation rates co-vary with orbital eccentricity, rather than with global climate as reflected by delta18O or delta13C. A source of this 100-k.y. cycle of sedimentation rate in the absence of similar ice volume fluctuations may be precessional heating of equatorial land masses, which in an energy balance climate model drives variations of monsoonal climates with a 100-k.y. rhythm. For the interval younger than 0.9 Ma, high sedimentation rates in the 100-k.y. band are consistently associated with glacial stages. This change of pattern suggests that when the amplitude of glacial cycles become large enough, their global effects overpower a local monsoon-driven variation in sedimentation rate at Site 846.
Resumo:
A core of foraminiferal-coccolithic oozes filling a valley of the transform fault located at 29°40'S on the South Atlantic Ridge contains layers composed of angular fragments of igneous and metamorphic rocks. They include many serpentinites deriving from serpentinized ultrabasic rocks, probably exposed on the lower section of the southern slope of the fault valley. A mineral and chemical description of these serpentinites is given.