360 resultados para 813

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ice cover of the Arctic Ocean has been changing dramatically in the last decades and the consequences for the sea-ice associated ecosystem remain difficult to assess. Algal aggregates underneath sea ice have been described sporadically but the frequency and distribution of their occurrence is not well quantified. We used upward looking images obtained by a remotely operated vehicle (ROV) to derive estimates of ice algal aggregate biomass and to investigate their spatial distribution. During the IceArc expedition (ARK-XXVII/3) of RV Polarstern in late summer 2012, different types of algal aggregates were observed floating underneath various ice types in the Central Arctic basins. Our results show that the floe scale distribution of algal aggregates in late summer is very patchy and determined by the topography of the ice underside, with aggregates collecting in dome shaped structures and at the edges of pressure ridges. The buoyancy of the aggregates was also evident from analysis of the aggregate size distribution. Different approaches used to estimate aggregate biomass yield a wide range of results. This highlights that special care must be taken when upscaling observations and comparing results from surveys conducted using different methods or on different spatial scales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The climate evolution of the South Shetland Islands during the last c. 2000 years is inferred from the multiproxy analyses of a long (928 cm) sediment core retrieved from Maxwell Bay off King George Island. The vertical sediment flux at the core location is controlled by summer melting processes that cause sediment-laden meltwater plumes to form. These leave a characteristic signature in the sediments of NE Maxwell Bay. We use this signature to distinguish summer and winter-dominated periods. During the Medieval Warm Period, sediments are generally finer which indicates summer-type conditions. In contrast, during the Little Ice Age (LIA) sediments are generally coarser and are indicative of winter-dominated conditions. Comparison with Northern and Southern Hemisphere, Antarctic, and global temperature reconstructions reveals that the mean grain-size curve from Maxwell Bay closely resembles the curve of the global temperature reconstruction. We show that the medieval warming occurred earlier in the Southern than in the Northern Hemisphere, which might indicate that the warming was driven by processes occurring in the south. The beginning of the LIA appears to be almost synchronous in both hemispheres. The warming after the LIA closely resembles the Northern Hemisphere record which might indicate this phase of cooling was driven by processes occurring in the north. Although the recent rapid regional warming is clearly visible, the Maxwell Bay record does not show the dominance of summer-type sediments until the 1970s. Continued warming in this area will likely affect the marine ecosystem through meltwater induced turbidity of the surface waters as well as an extension of the vegetation period due to the predicted decrease of sea ice in this area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The amount of solar radiation transmitted through Arctic sea ice is determined by the thickness and physical properties of snow and sea ice. Light transmittance is highly variable in space and time since thickness and physical properties of snow and sea ice are highly heterogeneous on variable time and length scales. We present field measurements of under-ice irradiance along transects under undeformed land-fast sea ice at Barrow, Alaska (March, May, and June 2010). The measurements were performed with a spectral radiometer mounted on a floating under-ice sled. The objective was to quantify the spatial variability of light transmittance through snow and sea ice, and to compare this variability along its seasonal evolution. Along with optical measurements, snow depth, sea ice thickness, and freeboard were recorded, and ice cores were analyzed for chlorophyll a and particulate matter. Our results show that snow cover variability prior to onset of snow melt causes as much relative spatial variability of light transmittance as the contrast of ponded and white ice during summer. Both before and after melt onset, measured transmittances fell in a range from one third to three times the mean value. In addition, we found a twentyfold increase of light transmittance as a result of partial snowmelt, showing the seasonal evolution of transmittance through sea ice far exceeds the spatial variability. However, prior melt onset, light transmittance was time invariant and differences in under-ice irradiance were directly related to the spatial variability of the snow cover.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Menez Gwen hydrothermal vents, located on the flanks of a small young volcanic structure in the axial valley of the Menez Gwen seamount, are the shallowest known vent systems on the Mid-Atlantic Ridge that host chemosynthetic communities. Although visited several times by research cruises, very few images have been published of the active sites, and their spatial dimensions and morphologies remain difficult to comprehend. We visited the vents on the eastern flank of the small Menez Gwen volcano during cruises with RV Poseidon (POS402, 2010) and RV Meteor (M82/3, 2010), and used new bathymetry and imagery data to provide first detailed information on the extents, surface morphologies, spatial patterns of the hydrothermal discharge and the distribution of dominant megafauna of five active sites. The investigated sites were mostly covered by soft sediments and abundant white precipitates, and bordered by basaltic pillows. The hydrothermally-influenced areas of the sites ranged from 59 to 200 m**2. Geo-referenced photomosaics and video data revealed that the symbiotic mussel Bathymodiolus azoricus was the dominant species and present at all sites. Using literature data on average body sizes and biomasses of Menez Gwen B. azoricus, we estimated that the B. azoricus populations inhabiting the eastern flank sites of the small volcano range between 28,640 and 50,120 individuals with a total biomass of 50 to 380 kg wet weight. Based on modeled rates of chemical consumption by the symbionts, the annual methane and sulfide consumption by B. azoricus could reach 1760 mol CH4 yr**-1 and 11,060 mol H2S yr**-1. We propose that the chemical consumption by B. azoricus over at the Menez Gwen sites is low compared to the natural release of methane and sulfide via venting fluids.