6 resultados para 8-70B
em Publishing Network for Geoscientific
Resumo:
Rare earth element (REE), major, and trace element abundances and relative fractionations in forty nodular cherts sampled by the Deep Sea Drilling Project (DSDP) and Ocean Drilling Program (ODP) indicate that the REE composition of chert records the interplay between terrigenous sources and scavenging from the local seawater. Major and (non-REE) trace element ratios indicate that the aluminosilicate fraction within the chert is similar to NASC (North American Shale Composite), with average Pacific chert including ~7% NASC-like particles, Indian chert ~11% NASC, Atlantic chert ~17% NASC, and southern high latitude (SHL) chert 53% NASC. Using La as a proxy for sum REE, approximations of excessive La (the amount of La in excess of that supplied by the detrital aluminosilicate fraction) indicate that Pacific chert contains the greatest excessive La (85% of total La) and SHL chert the least (38% of total La). As shown by interelement associations, this excessive La is most likely an adsorbed component onto aluminosilicate and phosphatic phases. Accordingly, chert from the large Pacific Ocean, where deposition occurs relatively removed from significant terrigenous input, records a depositional REE signal dominated by adsorption of dissolved REEs from seawater. Pacific chert Ce/Ce* <<1 and normative La/Yb ~ 0.8-1, resulting from adsorption of local Ce-depleted seawater and preferential adsorption of LREEs from seawater (e.g., normative La/Yb ~0.4), which increases the normative La/Yb ratio recorded in chert. Chert from the Atlantic basin, a moderately sized ocean basin lined by passive margins and with more terrigenous input than the Pacific, records a mix of adsorptive and terrigenous REE signals, with moderately negative Ce anomalies and normative La/Yb ratios intermediate to those of the Pacific and those of terrigenous input. Chert from the SHL region is dominated by the large terrigenous input on the Antarctic passive margin, with inherited Ce/Ce* ~1 and inherited normative La/Yb values of ~1.2-1.4. Ce/Ce* does not vary with age, either throughout the entire data base or within a particular basin. Overall, Ce/Ce* does not correlate with P2O5 concentrations, even though phosphatic phases may be an important REE carrier.
Resumo:
Water extracted from opal-CT ("porcellanite", "cristobalite"), granular microcrystalline quartz (chert), and pure fibrous quartz (chalcedony) in cherts from the JOIDES Deep Sea Drilling Project is 56? to 87? depleted in deuterium relative to the water in which the silica formed. This large fractionation is similar in magnitude and sign to that observed for hydroxyl in clay minerals and suggests that water extracted from these forms of silica has been derived from hydroxyl groups within the silica. Delta18O-values for opal-CT at sites 61, 64, 70B and 149 vary from 34.3? to 37.2? and show no direct correlation with depth of burial. Granular microcrystaUine quartz in these cores is 0.5 ? depleted in 18O relative to coexisting opal-CT at sediment depths of 100 m and the depletion increases to 2? for sediments buried below 384 m. These relationships suggest that opal-CT forms before significant burial while granular microcrystalline quartz forms during deeper burial at warmer temperatures. The temperature at which opal-CT forms is thus probably approximately equal to the temperature of the overlying bottom water. Isotopic temperatures deduced for opal-CT formation are preliminary and very approximate, but yield Eocene deep-water temperatures of 5-13°C, and 6°C for the upper Cretaceous sample. Pure euhedral quartz crystals lining a cavity in opal-CT at 388 m in core 8-70B-4-CC have a ~delta18O value of +29.8? and probably formed near maximum burial. The isotopic temperature is approximately 32 ° C.