2 resultados para 710201 Waste management

em Publishing Network for Geoscientific


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present the first high-resolution (500 m × 500 m) gridded methane (CH4) emission inventory for Switzerland, which integrates the national emission totals reported to the United Nations Framework Convention on Climate Change (UNFCCC) and recent CH4 flux studies conducted by research groups across Switzerland. In addition to anthropogenic emissions, we also include natural and semi-natural CH4 fluxes, i.e., emissions from lakes and reservoirs, wetlands, wild animals as well as uptake by forest soils. National CH4 emissions were disaggregated using detailed geostatistical information on source locations and their spatial extent and process- or area-specific emission factors. In Switzerland, the highest CH4 emissions in 2011 originated from the agricultural sector (150 Gg CH4/yr), mainly produced by ruminants and manure management, followed by emissions from waste management (15 Gg CH4/yr) mainly from landfills and the energy sector (12 Gg CH4/yr), which was dominated by emissions from natural gas distribution. Compared to the anthropogenic sources, emissions from natural and semi-natural sources were relatively small (6 Gg CH4/yr), making up only 3 % of the total emissions in Switzerland. CH4 fluxes from agricultural soils were estimated to be not significantly different from zero (between -1.5 and 0 Gg CH4/yr), while forest soils are a CH4 sink (approx. -2.8 Gg CH4/yr), partially offsetting other natural emissions. Estimates of uncertainties are provided for the different sources, including an estimate of spatial disaggregation errors deduced from a comparison with a global (EDGAR v4.2) and a European CH4 inventory (TNO/MACC). This new spatially-explicit emission inventory for Switzerland will provide valuable input for regional scale atmospheric modeling and inverse source estimation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The presented thesis was written in the frame of a project called 'seepage water prognosis'. It was funded by the Federal Ministry for Education and Science (BMBF). 41 German institutions among them research institutes of universities, public authorities and engineering companies were financed for three years respectively. The aim was to work out the scientific basis that is needed to carry out a seepage water prognosis (Oberacker und Eberle, 2002). According to the Federal German Soil Protection Act (Federal Bulletin, 1998) a seepage water prognosis is required in order to avoid future soil impacts from the application of recycling products. The participants focused on the development of either methods to determine the source strength of the materials investigated, which is defined as the total mass flow caused by natural leaching or on models to predict the contaminants transport through the underlying soil. Annual meetings of all participants as well as separate meetings of the two subprojects were held. The department of Geosciences in Bremen participated with two subprojects. The aim of the subproject that resulted in this thesis was the development of easily applicable, valid, and generally accepted laboratory methods for the determination of the source strength. In the scope of the second subproject my colleague Veith Becker developed a computer model for the transport prognosis with the source strength as the main input parameter.