426 resultados para 70-507C

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Interaction between young basaltic crust and seawater near the oceanic speading centers is one of the important processes affecting the chemical composition of the oceanic layer. The formation of metalliferous hydrothermal sediments results from this interaction. The importance of the interaction between seawater and basalt in determining the chemical composition of pore waters from sediments is well known. The influence of mineral solutions derived from this interaction on ocean water composition and the significant flux of some elements (e.g., Mn) are reported by Lyle (1976), Bogdanov et al. (1979), and others. Metal-rich sediments found in active zones of the ocean basins illustrate the influence of seawater-basalt interaction and its effect on the sedimentary cover in such areas. The role of hydrothermal activity and seawater circulation in basalts with regard to global geochemistry cycles has recently been demonstrated by Edmond, Measures, McDuff, McDuff et al. (1979), and Edmond, Measures, Mangum (1979). In the area of the Galapagos Spreading Center the interaction of sediments and solutions derived from interaction of seawater and basalt has resulted in the formation of hydrothermal mounds. The mounds are composed of manganese crusts and green clay interbedded and mixed with pelagic nannofossil ooze. These mounds are observed only in areas characterized by high heat flow (Honnorez, et al., 1981) and high hydrothermal activity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Data obtained while investigating the mounds area near the Galapagos Spreading Center demonstrate the direct influence of solutions derived from the interaction of seawater and young oceanic crust on the sedimentary cover. Investigation of metalliferous sediments from the mid-oceanic ridges, the Galapagos mounds, and the FAMOUS-area zone formations have shown that this influence and the resulting products are dependent on composition, temperature, and conditions of solution input. The study of sulfur in upwardly migrating solutions and the interaction of these solutions with sediments is of great interest. Investigations of different types of hydrothermally derived formations (Edmond, et al., 1979; Spiess et al., 1980; Styrt et al., 1981; Rosanova 1976; Grinenko et al., 1978) have shown the significant role of sulfur-bearing minerals in deposits formed from hightemperature solutions. In contrast, the addition of hydrothermal sulfur is negligible in those metalliferous sediments that precipitated as a result of the interaction between the solutions and open seawater (Bonatti et al., 1972, 1976; Gordeev et al., 1979; Migdisov, Bogdanov, et al., 1979). For example, sulfides are absent in clearly oxidized metalliferous sediments from the East Pacific Rise (EPR). Barite sulfur from these sediments is identical with seawater sulfate sulfur in isotope composition (Grinenko et al., 1978). Gurvich and Bogdanov (1977) have suggested that barium from EPR metalliferous sediments results completely from biological activity and from the components of ocean waters. Edmond et al. (1979) report that low-temperature springs from the Galapagos Rift axis contain two types of solutions: those with and those without H2S.