184 resultados para 693
em Publishing Network for Geoscientific
Resumo:
Oligocene to Quaternary sediments were recovered from the Antarctic continental margin in the eastern Weddell Sea during ODP Leg 113 and Polarstern expedition ANT-VI. Clay mineral composition and grain size distribution patterns are useful for distinguishing sediments that have been transported by ocean currents from those that were ice-rafted. This, in turn, has assisted in providing insights about the changing late Paleogene to Neogene sedimentary environment as the cryosphere developed in Antarctica. During the middle Oligocene, increasing glacial conditions on the continent are indicated by the presence of glauconite sands, that are interpreted to have formed on the shelf and then transported down the continental slope by advancing glaciers or as a result of sea-level lowering. The dominance of illite and a relatively high content of chlorite suggest predominantly physical weathering conditions on the continent. The high content of biogenic opal from the late Miocene to the late Pliocene resulted from increased upwelling processes at the continental margin due to increased wind strength related to global cooling. Partial melting of the ice-sheet occurred during an early Pliocene climate optimum as is shown by an increasing supply of predominantly current-derived sediment with a low mean grain size and peak values of smectite. Primary productivity decreased at ~ 3 Ma due to the development of a permanent sea-ice cover close to the continent. Late Pleistocene sediments are characterized by planktonic foraminifers and biogenic opal, concentrated in distinct horizons reflecting climatic cycles. Isotopic analysis of AT. pachyderma produced a stratigraphy which resulted in a calculated sedimentation rate of 1 cm/k.y. during the Pleistocene. Primary productivity was highest during the last three interglacial maxima and decreased during glacial episodes as a result of increasing sea-ice coverage.
Resumo:
The first well logs collected below the Antarctic circle were obtained during Leg 113 at Site 693 on the Dronning Maud Land Margin (Antarctica) in the Weddell Sea. Gamma-ray, resistivity, and sonic logs were collected between 108.0 and 439.0 mbsf. The downhole logs show good agreement with the data collected from cores and provide a continuous measurement of the sedimentary record. These continuous log records show that the rather uniform Tertiary lithology seen in cores is characterized by high-frequency variability in the log data. Several thin hard streaks are identified, the largest of which coincides with a major Miocene hiatus. Associated with this hiatus is a change to lower illite content (and correspondingly lower gamma-ray counts) and to a significant increase in diatom content. Spectral analysis of the logs was performed on the lower Pliocene through upper Oligocene interval (108.0-343.0 mbsf). Between 108.0 and 245.0 mbsf, average sedimentation rates (50 and 26 m/m.y.) are high enough to show that variance is present in the orbital eccentricity (~95 k.y.) and obliquity (~41 k.y.) bands. Between 253.0 and 343.0 mbsf, the sedimentation rate (8 m/m.y.) is too low to resolve high frequency variations. The Milankovitch frequencies are best developed in the resistivity logs. Resistivity is responding to changes in porosity, which in these sediments is controlled by the abundance of biosiliceous sediments, particularly diatoms. The orbital forcing suggested by the Milankovitch frequencies may be influencing diatom productivity by inducing oscillations in upwelling, ice coverage, pack ice, and/or polynya. Although variations in diatom abundance were observed in the cores, they were not attributed to a Milankovitch signal, and therefore in this environment, downhole logs are an important contribution to the detection and understanding of orbitally influenced changes in sedimentation.
Resumo:
The ice cover of the Arctic Ocean has been changing dramatically in the last decades and the consequences for the sea-ice associated ecosystem remain difficult to assess. Algal aggregates underneath sea ice have been described sporadically but the frequency and distribution of their occurrence is not well quantified. We used upward looking images obtained by a remotely operated vehicle (ROV) to derive estimates of ice algal aggregate biomass and to investigate their spatial distribution. During the IceArc expedition (ARK-XXVII/3) of RV Polarstern in late summer 2012, different types of algal aggregates were observed floating underneath various ice types in the Central Arctic basins. Our results show that the floe scale distribution of algal aggregates in late summer is very patchy and determined by the topography of the ice underside, with aggregates collecting in dome shaped structures and at the edges of pressure ridges. The buoyancy of the aggregates was also evident from analysis of the aggregate size distribution. Different approaches used to estimate aggregate biomass yield a wide range of results. This highlights that special care must be taken when upscaling observations and comparing results from surveys conducted using different methods or on different spatial scales.