274 resultados para 68-503_Site
em Publishing Network for Geoscientific
Resumo:
The disappearance at ~10 Ma of the deep dwelling planktonic foraminifer Globoquadrina dehiscens from the western Pacific including the South China Sea was about 3 Myr earlier than its final extinction elsewhere. Accompanying this event at ~10 Ma was a series of faunal turnover characterized by increase in mixed layer, warm-water species and decrease to a minimum in deepwater species. Paleobiological and isotopic evidence indicates sea surface warming and a deepened local thermocline that we interpret as related to the development of an early western Pacific warm pool. The stepwise decline of G. dehiscens and other deep dwelling species from the NW and SW Pacific suggests more intensive warm water pileup than equatorial localities where surface bypass flow through the narrowing Indonesia seaway appears to remain efficient during the late Miocene. Planktonic delta18O values from the South China Sea consistently lighter than the tropical western Pacific during the Miocene also suggest, similar to today, more variable hydrologic conditions along the periphery than in the core of the warm pool. Stronger hydrologic variability affected mainly by monsoons and increased thermal gradient along the western margin of the late Miocene warm pool may have contributed to the decline of deep dwelling planktonic species including the early extinction of G. dehiscens from the South China Sea region. The late Miocene warm pool became influential and paleobiologically detectable from ~10 Ma, but the modern warm pool did not appear until about 4 Ma, in the middle Pliocene.
Resumo:
Fifty radiolarian events of early Pleistocene and Neogene age were identified in an E-W transect of equatorial DSDP sites, extending from the Gulf of Panama to the western Pacific and eastern Indian Oceans. Our objective was to document the degree of synchroneity or time-transgressiveness of stratigraphically-useful datum levels from this geologic time interval. We restricted our study to low latitudes within which morphological variations of individual taxa are minimal, the total assemblage diversity remains high, and stratigraphic continuity is well-documented by an independent set of criteria. Each of the five sites chosen (503, 573, 289/586, 214) was calibrated to an "absolute" time scale, using a multiple of planktonic foraminiferal, nannofossil, and diatom datum levels which have been independently correlated to the paleomagnetic polarity time scale in piston core material. With these correlations we have assigned "absolute" ages to each radiolarian event, with a precision of 0.1-0.2 m.y. and an accuracy of 0.2-0.4 m.y. On this basis we have classified each of the events as either: (a) synchronous (range of ages <0.4 m.y.); (b) time-transgressive (i.e., range of ages >1.0 m.y.); and (c) not resolvable (range of ages 0.4-1.0 m.y.). Our results show that, among the synchronous datum levels, a large majority (15 out of 19) are last occurrences. Among those events which are clearly time-transgressive, most are first appearances (10 out of 13). In many instances taxa appear to evolve first in the Indian Ocean, and subsequently in the western and eastern Pacific Ocean. This pattern is particularly unexpected in view of the strong east-to-west zonal flow in equatorial latitudes. Three of the time-transgressive events have been used to define zonal boundaries: the first appearances of Spongaster pentas, Diartus hughesi, and D. petterssoni. Our results suggest that biostratigraphic non-synchroneity may be substantial (i.e., greater than 1 m.y.) within a given latitudinal zone; one would expect this effect to be even more pronounced across oceanographic and climatic gradients. We anticipate that the extent of diachroneity may be comparable for diatom, foraminiferal, and nannofossil datum levels as well. If this proves true, global "time scales" may need to be re-formulated on the basis of a smaller number of demonstrably synchronous events.
Resumo:
Obtaining long, continuous, and undisturbed sections of unconsolidated Neogene deep sea sedimentary sections has been limited by (1) practical length of piston cores to about 30 meters and (2) disturbance of sediment by rotary drilling with Glomar Challenger. The relatively high deposition rates of late Neogene sediments in the North Atlantic and in the Caribbean in particular has limited penetration, with conventional piston coring, to sediments not much older than late Pliocene in the Atlantic and not even through the late Pleistocene in the Caribbean. Rotary drilling has penetrated much older sediments in both areas, but the cores suffered extensive drilling disturbance that seriously degrades the Paleomagnetism of the material. Utilization of the hydraulic piston corer on the Challenger combines the advantage of a generally undisturbed recovery and great penetration to produce long, relatively undisturbed sections of late Neogene and Quaternary sediments suitable for paleomagnetic studies. In this chapter we present paleomagnetic data from Site 502. We tried to determine relative azimuthal orientation of successive cores (see Introduction for details). Because the low latitude of the site meant a small (inclination of about 22°) vertical component of magnetization, reversals of magnetization could easily be detected only in changes in the horizontal component, as 180° shifts in the declination direction of magnetization. Based on information from the core orienting device, a fiducial line was drawn the length of each core prior to cutting it into the standard 1.5 meter sections.