166 resultados para 553-1
em Publishing Network for Geoscientific
Resumo:
The work carried out by the physical oceanography group on POLARSTERN Leg ANT-V/3 concentrated on four major topics: A. A large scale survey of the eastern boundary between the Weddell gyre and the open ocean. On the way to the coastal polynya in early October 12 CTD stations were carried out between 54°30'S, 6°E and 70°30'S 8°W. Another set of 16 stations was obtained in early December on the way back north. During this transsect three current meter moorings were recovered at Maud Rise. The path between the current meter arrays was used to run an additional section to the NNE across the top of Maud Rise. B. A large scale survey of the Antarctic Coastal Current along the eastern shelf area. To obtain the water mass characteristics along the eastern Weddell shelf 36 CTD stations were carried out between Atka Bay and the Filchner Trench. Most of the stations were located on the shelf. Cross shelf sections were obtained both near Drescher Inlet and off Halley Bay, in the divergence area of the Coastal Current where the continental slope turns to the west and south of Vestkapp at Neptune's Point. A longshore section over 120 km was run north of Vestkapp. C. A mesoscale survey of the Antarctic Coastal Current off Drescher Inlet. The experimental work consisted of 37 CTD-stations and direct current measurements. The CTD-profiles were grouped into seven sections perpendicular to the coast line off Drescher Inlet extending once over 70 km but normally over 35 km. The profile depth ranged from 300 m on one section to the complete water column at two sections. Most sections consist of five stations providing highest resolution over the upper continental slope with offshore increasing spacing. The stations were chosen to represent the shelf (450 m), the shelf break (800 m), the upper slope (1600 m), the lower slope (2400 m) and the transition to the abyssal plain (3400 m). Rough topography and difficult ice conditions made it impossible to meet those requirements in all cases. D. A small scale survey of the hydrographic conditions under the sea ice. The motivation for these studies arose during the cruise. Consequently a suitable Instrumentation had to be developed at sea. This was done with a NB-Smart CTD which was inserted on an L-shaped lever through a hole in the ice. However, various water intrusions into the instrument resulted in the failure of this technique. In consequence a special lever system was built to position a NB Mark 3b weighing about 40 kg below the ice. Twenty four profiles were obtained reaching from the bottom of the ice down to 2 m below the ice surface with a maximum distance of 1 m from the entry hole. As the conductivity sensor was influenced by nearby ice platelets, salinity samples where drawn to check the sensor.
Resumo:
We analyzed hydrographic data from the northwestern Weddell Sea continental shelf of the three austral winters 1989, 1997, and 2006 and two summers following the last winter cruise. During summer a thermal front exists at ~64° S separating cold southern waters from warm northern waters that have similar characteristics as the deep waters of the central basin of the Bransfield Strait. In winter, the whole continental shelf exhibits southern characteristics with high Neon (Ne) concentrations, indicating a significant input of glacial melt water. The comparison of the winter data from the shallow shelf off the tip of the Antarctic Peninsula, spanning a period of 17 yr, shows a salinity decrease of 0.09 for the whole water column, which has a residence time of <1 yr. We interpret this freshening as being caused by a combination of reduced salt input due to a southward sea ice retreat and higher precipitation during the late 20th century on the western Weddell Sea continental shelf. However, less salinification might also result from a delicate interplay between enhanced salt input due to sea ice formation in coastal areas formerly occupied by Larsen A and B ice shelves and increased Larsen C ice loss.
Resumo:
The passive continental margin south-west of Rockall Plateau is characterized by a thick sequence of oceanward-dipping seismic reflectors. During Leg 81 of the Deep Sea Drilling Project, these reflectors were sampled at Site 553 and proved to consist almost exclusively of basalt. Here we present lead isotope data which indicate that these basalts may have been contaminated by ancient uranium-depleted continental crust, or alternatively, derived from a sub-continental lithospheric mantle source. In either case, the implications are that the basalts of the south-west Rockall Plateau formed by eruption through and onto continental basement, not by 'subaerial seafloor spreading'. This conclusion is in accord with gravity models of the area, which predict stretched continental crust beneath the dipping reflector sequence.