149 resultados para 478-2
em Publishing Network for Geoscientific
Resumo:
The first detailed stratigraphic record from a deep-water carbonate mound in the Northeast Atlantic based on absolute datings (U/Th and AMS 14C) and stable oxygen isotope records reveals that its top sediment sequences are condensed by numerous hiatuses. According to stable isotope data, mainly sediments with an intermediate signal are preserved on the mound, while almost all fully glacial and interglacial sediments have either not been deposited or have been eroded later. The resulting hiatuses reduce the Late Pleistocene sediment accumulation at Propeller Mound to amounts smaller than the background sedimentation. The hiatuses most likely result due to the sweeping of the mound in turn with the re-establishment of vigour interglacial circulation patterns after sluggish current regimes during glacials. Thus, within the discussion if internal, fluid-driven or external environmentally driven processes control the evolution of such carbonate mounds, our findings for Propeller Mound clearly point to environmental forcing as the dominant mechanism shaping deep-water carbonate mounds in the NE Atlantic during the Late Pleistocene and Holocene.
Resumo:
High resolution studies from the Propeller Mound, a cold-water coral carbonate mound in the NE Atlantic, show that this mound consists of >50% carbonate justifying the name "carbonate mound". Through the last ~300,000 years approximately one third of the carbonate has been contributed by cold-water corals, namely Lophelia pertusa and Madrepora oculata. This coral bound contribution to the carbonate budget of Propeller Mound is probably accompanied by an unknown portion of sediments buffered from suspension by the corals. However, extended hiatuses in Propeller Mound sequences only allow the calculation of a net carbonate accumulation. Thus, net carbonate accumulation for the last 175 kyr accounts for only <0.3 g/cm2/kyr, which is even less than for the off-mound sediments. These data imply that Propeller Mound faces burial by hemipelagic sediments as has happened to numerous buried carbonate mounds found slightly to the north of the investigated area.