101 resultados para 4 toluene sulfonic acid

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aerosol climatology at the coastal Antarctic Neumayer Station (NM) was investigated based on continuous, 25-yr long observations of biogenic sulphur components (methanesulfonate and non-sea salt sulphate), sea salt and nitrate. Although significant long-term trends could only be detected for nitrate (-3.6 ± 2.5% per year between 1983 and 1993 and +4.0 ± 3.2% per year from 1993-2007), non-harmonic periodicities between 2 and 5 yr were typical for all species. Dedicated time series analyses revealed that relations to sea ice extent and various circulation indices are weak at best or not significant. In particular, no consistent link between sea ice extent and sea salt loadings was evident suggesting only a rather local relevance of the NM sea salt record. Nevertheless, a higher Southern Annular Mode index tended to entail a lower biogenic sulphur signal. In examining the spatial uniformity of the NM findings we contrasted them to respective 17 yr records from the coastal Dumont d'Urville Station. We found similar long-term trends for nitrate, indicating an Antarctic-wide but not identifiable atmospheric signal, although any significant impact of solar activity or pollution could be ruled out. No inter-site variability on the multiannual scale was evident for the other ionic compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continuous condensation particle (CP) observations were conducted from 1984 through 2009 at Neumayer Station under stringent contamination control. During this period, the CP concentration (median 258 1/cm**3) showed no significant long term trend but exhibited a pronounced seasonality characterized by a stepwise increase starting in September and reaching its annual maximum of around 10**3/cm**3 in March. Minimum values below 10**2/cm**3 were observed during June/July. Dedicated time series analyses in the time and frequency domain revealed no significant correlations between inter-annual CP concentration variations and atmospheric circulation indices like Southern Annular Mode (SAM) or Southern Ocean Index (SOI). The impact of the Pinatubo volcanic eruption and strong El Niño events did not affect CP concentrations. From thermodenuder experiments we deduced that the portion of volatile (at 125 °C) and semi-volatile (at 250 °C) particles which could be both associated with biogenic sulfur aerosol, was maximum during austral summer, while during winter non-volatile sea salt particles dominated. During September through April we could frequently observe enhanced concentrations of ultrafine particles within the nucleation mode (between 3 nm and 7 nm particle diameter), preferentially in the afternoon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We quantified postdepositional losses of methane sulfonate (MSA-), nitrate, and chloride at the European Project for Ice Coring in Antarctica (EPICA) drilling site in Dronning Maud Land (DML) (75°S, 0°E). Analyses of four intermediate deep firn cores and 13 snow pits were considered. We found that about 26 ± 13% of the once deposited nitrate and typically 51 ± 20% of MSA- were lost, while for chloride, no significant depletion could be observed in firn older than one year. Assuming a first order exponential decay rate, the characteristic e-folding time for MSA- is 6.4 ± 3 years and 19 ± 6 years for nitrate. It turns out that for nitrate and MSA- the typical mean concentrations representative for the last 100 years were reached after 5.4 and 6.5 years, respectively, indicating that beneath a depth of around 1.2-1.4 m postdepositional losses can be neglected. In the area of investigation, only MSA- concentrations and postdepositional losses showed a distinct dependence on snow accumulation rate. Consequently, MSA- concentrations archived at this site should be significantly dependent on the variability of annual snow accumulation, and we recommend a corresponding correction. With a simple approach, we estimated the partial pressure of the free acids MSA, HNO3, and HCl on the basis of Henry's law assuming that ionic impurities of the bulk ice matrix are localized in a quasi-brine layer (QBL). In contrast to measurements, this approach predicts a nearly complete loss of MSA-, NO3 - , and Cl-.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atmospheric trace element concentrations were measured from March 1999 through December 2003 at the Air Chemistry Observatory of the German Antarctic station Neumayer by inductively coupled plasma - quadrupol mass spectrometry (ICP-QMS) and ion chromatogra-phy (IC). This continuous five year long record derived from weekly aerosol sampling re-vealed a distinct seasonal summer maximum for elements linked with mineral dust entry (Al, La, Ce, Nd) and a winter maximum for the mostly sea salt derived elements Li, Na, K, Mg, Ca, and Sr. The relative seasonal amplitude was around 1.7 and 1.4 for mineral dust (La) and sea salt aerosol (Na), respectively. On average a significant deviation regarding mean ocean water composition was apparent for Li, Mg, and Sr which could hardly be explained by mir-abilite precipitation on freshly formed sea ice. In addition we observed all over the year a not clarified high variability of element ratios Li/Na, K/Na, Mg/Na, Ca/Na, and Sr/Na. We found an intriguing co-variation of Se concentrations with biogenic sulfur aerosols (methane sul-fonate and non-sea salt sulfate), indicating a dominant marine biogenic source for this element linked with the marine biogenic sulfur source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemistry of snow and ice cores from Svalbard is influenced by variations in local sea ice margin and distance to open water. Snow pits sampled at two summits of Vestfonna ice cap (Nordaustlandet, Svalbard), exhibit spatially heterogeneous soluble ions concentrations despite similar accumulation rates, reflecting the importance of small-scale weather patterns on this island ice cap. The snow pack on the western summit shows higher average values of marine ions and a winter snow layer that is relatively depleted in sulphate. One part of the winter snow pack exhibits a [SO4-/Na+] ratio reduced by two thirds compared with its ratio in sea water. This low sulphate content in winter snow is interpreted as the signature of frost flowers, which are formed on young sea ice when offshore winds predominate. Frost flowers have been described as the dominant source of sea salt to aerosol and precipitation in ice cores in coastal Antarctica but this is the first time their chemical signal has been described in the Arctic. The eastern summit does not show any frost flower signature and we interpret the unusually dynamic ice transport and rapid formation of thin ice on the Hinlopen Strait as the source of the frost flowers.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicon isotopes are a powerful tool to investigate the cycling of dissolved silicon (Si). In this study the distribution of the Si isotope composition of dissolved silicic acid (d30Si(OH)4) was analyzed in the water column of the Eastern Equatorial Pacific (EEP) where one of the globally largest Oxygen Minimum Zones (OMZs) is located. Samples were collected at 7 stations along two meridional transects from the equator to 14°S at 85°50'W and 82°00'W off the Ecuadorian and Peruvian coast. Surface waters show a large range in isotope compositions d30Si(OH)4 (+2.2 per mil to +4.4 per mil) with the highest values found at the southernmost station at 14°S. This station also revealed the most depleted silicic acid concentrations (0.2 µmol/kg), which is a function of the high degree of Si utilization by diatoms and admixture with waters from highly productive areas. Samples within the upper water column and the OMZ at oxygen concentrations below 10 µmol/kg are characterized by a large range in d30Si(OH)4, which mainly reflects advection and mixing of different water masses, even though the highly dynamic hydrographic system of the upwelling area off Peru does not allow the identification of clear Si isotope signals for distinct water masses. Therefore we cannot rule out that also dissolution processes have an influence on the d30Si(OH)4 signature in the subsurface water column. Deep water masses (>2000 m) in the study area show a mean d30Si(OH)4 of +1.2±0.2 per mil, which is in agreement with previous studies from the eastern and central Pacific. Comparison of the new deep water data of this study and previously published data from the central Pacific and Southern Ocean reveal substantially higher d30Si(OH)4 values than deep water signatures from the North Pacific. As there is no clear correlation between d30Si(OH)4 and silicic acid concentrations in the entire data set the distribution of d30Si(OH)4 signatures in deep waters of the Pacific is considered to be mainly a consequence of the mixing of several end member water masses with distinct Si isotope signatures including Lower Circumpolar Deep Water (LCDW) and North Pacific Deep Water (NPDW).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first Air Chemistry Observatory at the German Antarctic station Georg von Neumayer (GvN) was operated for 10 years from 1982 to 1991. The focus of the established observational programme was on characterizing the physical properties and chemical composition of the aerosol, as well as on monitoring the changing trace gas composition of the background atmosphere, especially concerning greenhouse gases. The observatory was designed by the Institut für Umweltphysik, University of Heidelberg (UHEIIUP). The experiments were installed inside the bivouac lodge, mounted on a sledge and put upon a snow hill to prevent snow accumulation during blizzards. All experiments were under daily control and daily performance protocols were documented. A ventilated stainless steel inlet stack (total height about 3-4 m above the snow surface) with a 50% aerodynamic cut-off diameter around 7-10 µm at wind velocities between 4-10 m/s supplied all experiments with ambient air. Contamination free sampling was realized by several means: (i) The Air Chemistry Observatory was situated in a clean air area about 1500 m south of GvN. Due to the fact that northern wind directions are very rare, contamination from the base can be excluded for most of the time. (ii) The power supply (20 kW) is provided by a cable from the main station, thus no fuel-driven generator is operated in the very vicinity. (iii) Contamination-free sampling is controlled by the permanently recorded wind velocity, wind direction and by condensation particle concentration. Contamination was indicated if one of the following criteria were given: Wind direction within a 330°-30° sector, wind velocity <2.2 m/s or >17.5 m/s, or condensation particle concentrations >2500/cm**3 during summer, >800/cm**3 during spring/autumn and >400/cm**3 during winter. If one or a definable combination of these criteria were given, high volume aerosol sampling and part of the trace gas sampling were interrupted. Starting at 1982 through 1991-01-14 surface ozone was measured with an electrochemical concentration cell (ECC). Surface ozone mixing ratio are given in ppbv = parts per 10**9 by volume. The averaging time corresponds to the given time intervals in the data sheet. The accuracy of the values are better than ±1 ppbv and the detection limit is around 1.0 ppbv. Aerosols were sampled on two Whatman 541 cellulose filters in series and analyzed by ion chromatography at the UHEI-IUP. Generally, the sampling period was seven days but could be up to two weeks on occasion. The air flow was around 100 m**3/h and typically 10000-20000 m**3 of ambient air was forced through the filters for one sample. Concentration values are given in nanogram (ng) per 1 m**3 air at standard pressure and temperature (1013 mbar, 273.16 K). Uncertainties of the values were approximately ±10% to ±15% for the main components MSA, chloride, nitrate, sulfate and sodium, and between ±20% and ±30% for the minor species bromide, ammonium, potassium, magnesium and calcium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aimed at year-round recording of the chemical aerosol composition in central Antarctica, an unattended operating aerosol sampler was successfully deployed at the EPICA deep drilling site in Dronning Maud Land (Kohnen Station). Analyses of teflon/nylon filter packs consecutively collected over bi-weekly intervals during the February 2003 to December 2005 period allowed to evaluate seasonal concentration variations of methane sulphonate (MS), Cl-, NO3-, non-sea salt (nss-)SO4**2- and Na+, while NH4+ and mineral dust related ion results remained below detection limits. For MS and nss-SO4**2 distinct late summer maxima around 44 and 200 ng/m**3, respectively, were found, while (total) NO3- showed a broad November maximum of about 52 ng m**-3. In contrast, the highest concentrations of Na+ with peak values of up to 160 ng/m**3 were observed during the winter half year. The seasonality of these species broadly coincided with long-term observations at the coastal Neumayer Station, including surprisingly comparable NO3- levels. However, the biogenic sulphur and sea salt concentrations were lower at Kohnen by typically a factor of 2-3 and 10, respectively. The arrival of sea ice derived sea salt particles at Kohnen could not clearly detected, since even during mid-winter the nss-SO4**2- to Na+ ratio was generally too high to unambiguously identify a sulphur depleted sea salt SO4**2- fraction.