3 resultados para 3D local shape descriptor

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study multibeam angular backscatter data acquired in the eastern slope of the Porcupine Seabight are analysed. Processing of the angular backscatter data using the 'NRGCOR' software was made for 29 locations comprising different geological provinces like: carbonate mounds, buried mounds, seafloor channels, and inter-channel areas. A detailed methodology is developed to produce a map of angle-invariant (normalized) backscatter data by correcting the local angular backscatter values. The present paper involves detailed processing steps and related technical aspects of the normalization approach. The presented angle-invariant backscatter map possesses 12 dB dynamic range in terms of grey scale. A clear distinction is seen between the mound dominated northern area (Belgica province) and the Gollum channel seafloor at the southern end of the site. Qualitative analyses of the calculated mean backscatter values i.e., grey scale levels, utilizing angle-invariant backscatter data generally indicate backscatter values are highest (lighter grey scale) in the mound areas followed by buried mounds. The backscatter values are lowest in the inter-channel areas (lowest grey scale level). Moderate backscatter values (medium grey level) are observed from the Gollum and Kings channel data, and significant variability within the channel seafloor provinces. The segmentation of the channel seafloor provinces are made based on the computed grey scale levels for further analyses based on the angular backscatter strength. Three major parameters are utilized to classify four different seafloor provinces of the Porcupine Seabight by employing a semi-empirical method to analyse multibeam angular backscatter data. The predicted backscatter response which has been computed at 20° is the highest for the mound areas. The coefficient of variation (CV) of the mean backscatter response is also the highest for the mound areas. Interestingly, the slope value of the buried mound areas are found to be the highest. However, the channel seafloor of moderate backscatter response presents the lowest slope and CV values. A critical examination of the inter-channel areas indicates less variability within the estimated three parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subgrid processes occur in various ecosystems and landscapes but, because of their small scale, they are not represented or poorly parameterized in climate models. These local heterogeneities are often important or even fundamental for energy and carbon balances. This is especially true for northern peatlands and in particular for the polygonal tundra, where methane emissions are strongly influenced by spatial soil heterogeneities. We present a stochastic model for the surface topography of polygonal tundra using Poisson-Voronoi diagrams and we compare the results with available recent field studies. We analyze seasonal dynamics of water table variations and the landscape response under different scenarios of precipitation income. We upscale methane fluxes by using a simple idealized model for methane emission. Hydraulic interconnectivities and large-scale drainage may also be investigated through percolation properties and thresholds in the Voronoi graph. The model captures the main statistical characteristics of the landscape topography, such as polygon area and surface properties as well as the water balance. This approach enables us to statistically relate large-scale properties of the system to the main small-scale processes within the single polygons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report and discuss molecular and isotopic properties of hydrate-bound gases from 55 samples and void gases from 494 samples collected during Ocean Drilling Program (ODP) Leg 204 at Hydrate Ridge offshore Oregon. Gas hydrates appear to crystallize in sediments from two end-member gas sources (deep allochthonous and in situ) as mixtures of different proportions. In an area of high gas flux at the Southern Summit of the ridge (Sites 1248-1250), shallow (0-40 m below the seafloor [mbsf]) gas hydrates are composed of mainly allochthonous mixed microbial and thermogenic methane and a small portion of thermogenic C2+ gases, which migrated vertically and laterally from as deep as 2- to 2.5-km depths. In contrast, deep (50-105 mbsf) gas hydrates at the Southern Summit (Sites 1248 and 1250) and on the flanks of the ridge (Sites 1244-1247) crystallize mainly from microbial methane and ethane generated dominantly in situ. A small contribution of allochthonous gas may also be present at sites where geologic and tectonic settings favor focused vertical gas migration from greater depth (e.g., Sites 1244 and 1245). Non-hydrocarbon gases such as CO2 and H2S are not abundant in sampled hydrates. The new gas geochemical data are inconsistent with earlier models suggesting that seafloor gas hydrates at Hydrate Ridge formed from gas derived from decomposition of deeper and older gas hydrates. Gas hydrate formation at the Southern Summit is explained by a model in which gas migrated from deep sediments, and perhaps was trapped by a gas hydrate seal at the base of the gas hydrate stability zone (GHSZ). Free gas migrated into the GHSZ when the overpressure in gas column exceeded sealing capacity of overlaying sediments, and precipitated as gas hydrate mainly within shallow sediments. The mushroom-like 3D shape of gas hydrate accumulation at the summit is possibly defined by the gas diffusion aureole surrounding the main migration conduit, the decrease of gas solubility in shallow sediment, and refocusing of gas by carbonate and gas hydrate seals near the seafloor to the crest of the local anticline structure.