44 resultados para 3372
em Publishing Network for Geoscientific
Resumo:
Background: Studies of oyster microbiomes have revealed that a limited number of microbes, including pathogens, can dominate microbial communities in host tissues such as gills and gut. Much of the bacterial diversity however remains underexplored and unexplained, although environmental conditions and host genetics have been implicated. We used 454 next generation 16S rRNA amplicon sequencing of individually tagged PCR reactions to explore the diversity of bacterial communities in gill tissue of the invasive Pacific oyster Crassostrea gigas stemming from genetically differentiated beds under ambient outdoor conditions and after a multifaceted disturbance treatment imposing stress on the host. Results: While the gill associated microbial communities in oysters were dominated by few abundant taxa (i.e. Sphingomonas, Mycoplasma) the distribution of rare bacterial groups correlated to relatedness between the hosts under ambient conditions. Exposing the host to disturbance broke apart this relationship by removing rare phylotypes thereby reducing overall microbial diversity. Shifts in the microbiome composition in response to stress did not result in a net increase in genera known to contain potentially pathogenic strains. Conclusion: The decrease in microbial diversity and the disassociation between population genetic structure of the hosts and their associated microbiome suggest that disturbance (i.e. stress) may play a significant role for the assembly of the natural microbiome. Such community shifts may in turn also feed back on the course of disease and the occurrence of mass mortality events in oyster populations.
Resumo:
Oxidation rate of 35S-thiosulfate under simulated natural conditions and abundance of thiosulfate-oxidizing bacteria in a redox zone of the Black Sea are lower during winter and spring than in summer, especially in halistatic regions. Oxidation of thiosulfate under natural conditions is performed chiefly by lithotropic thionic bacteria, whose activity is limited by low temperatures. Adding thiosulfate and readily available organic matter to water samples from the redox zone and raising temperature of water stimulated activity of heterotrophic thiosulfate-oxidizing bacteria. Oxidation of elemental sulfur tagged with 35S apparently invovled two stages: abiotic oxidation of thiosulfate and subsequent bacterial oxidation of thiosulfate to sulfate.
Resumo:
Studies of picophytoplankton were carried out in the open Black Sea from February to April 1991 with concomitant blooming of diatoms. During this period cyanobacteria predominated in picoplankton averaging 98.8% of total picophytoplankton abundance and 95% of total picoplankton biomass. In February number of cells reached 1.5x10**9 per liter in the East Black Sea. Picoplankton biomass decreased during the observation period. From February to March biomass varied from 452 to 4918 mg/m**2 (av. 1632 mg/m**2), and from March through April from 4 to 656 mg/m**2 (av. 190 mg/m**2). Vertical distribution of picoplankton was determined by the upper margin of the main pycnocline. The major part of picoplankton biomass occurred in the mixed layer. With appearance of seasonal pycnoclines in the last days of March maximum biomass occurred under the upper mixed layer. No relationship was observed between Nitzschia delicatula bloom and picoplankton.