13 resultados para 301.6
em Publishing Network for Geoscientific
Resumo:
The constraints of an active life in a pelagic habitat led to numerous convergent morphological and physiological adaptations that enable cephalopod molluscs and teleost fishes to compete for similar resources. Here, we show for the first time that such convergent developments are also found in the ontogenetic progression of ion regulatory tissues; as in teleost fish, epidermal ionocytes scattered on skin and yolk sac of cephalopod embryos appear to be responsible for ionic and acid-base regulation before gill epithelia become functional. Ion and acid-base regulation is crucial in cephalopod embryos, as they are surrounded by a hypercapnic egg fluid with a Pco2 between 0.2 and 0.4 kPa. Epidermal ionocytes were characterized via immunohistochemistry, in situ hybridization, and vital dye-staining techniques. We found one group of cells that is recognized by concavalin A and MitoTracker, which also expresses Na+/H+ exchangers (NHE3) and Na+-K+-ATPase. Similar to findings obtained in teleosts, these NHE3-rich cells take up sodium in exchange for protons, illustrating the energetic superiority of NHE-based proton excretion in marine systems. In vivo electrophysiological techniques demonstrated that acid equivalents are secreted by the yolk and skin integument. Intriguingly, epidermal ionocytes of cephalopod embryos are ciliated as demonstrated by scanning electron microscopy, suggesting a dual function of epithelial cells in water convection and ion regulation. These findings add significant knowledge to our mechanistic understanding of hypercapnia tolerance in marine organisms, as it demonstrates that marine taxa, which were identified as powerful acid-base regulators during hypercapnic challenges, already exhibit strong acid-base regulatory abilities during embryogenesis.
Resumo:
The northwestern Cascadia Basin of western North America accumulated high-sedimentation-rate sequences during the Pleistocene sea-level low-stands. The continental shelf was largely exposed at that time, and rivers and estuaries delivered large sediment fluxes directly to the deep ocean. The IODP EXP1301 core, which was taken from the middle portion of the Cascadia Basin, is well preserved and exhibits the deeper and - more distal sedimentary facies. The lithology in this location is composed of two units, 1) hemipelagic mud with a thin sand layer and 2) thick, coarsening upward silt-sand turbidites with a small proportion of granules at the top. We will focus on the detailed sand-grain proportions in order to understand the origin of these sediments. We determined the modal proportions of the heavy minerals, and the chemical composition of olivine and orthopyroxene in fourteen samples. These are characterized by an abundance of amphibole, pyroxenes and epidote, and the presence of minerals derived from peridotite. There is no drastic change in the modal and mineral compositions of the sands and silts between the turbidite and hemipelagic sequences. There were two probable drainage systems on the continent, the Frazer and Columbia rivers, which shed turbidites into the Cascadia Basin after 1.6 Ma, especially at 0.46-0.76 Ma. Based on a comparison of the modal and mineral compositions, the Northern Cascadia Basin has been supplied with sediments, mainly from the Frazer River, through the Straits of Juan de Fuca, by Pleistocene to Holocene turbidites.