240 resultados para 3,6-dibromo-1-nitro-carbazole

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of studies have shown that Fourier transform infrared spectroscopy (FTIR) can be applied to quantitatively assess lacustrine sediment constituents. In this study, we developed calibration models based on FTIR for the quantitative determination of biogenic silica (BSi; n = 420; gradient: 0.9-56.5%), total organic carbon (TOC; n = 309; gradient: 0-2.9%), and total inorganic carbon (TIC; n= 152; gradient: 0-0.4%) in a 318 m-long sediment record with a basal age of 3.6 million years from Lake El'gygytgyn, Far East Russian Arctic. The developed partial least squares (PLS) regression models yield high cross-validated (CV) R2CV = 0.86-0.91 and low root mean square error of cross-validation (RMSECV) (3.1-7.0% of the gradient for the different properties). By applying these models to 6771 samples from the entire sediment record, we obtained detailed insight into bioproductivity variations in Lake El'gygytgyn throughout the middle to late Pliocene and Quaternary. High accumulation rates of BSi indicate a productivity maximum during the middle Pliocene (3.6-3.3 Ma), followed by gradually decreasing rates during the late Pliocene and Quaternary. The average BSi accumulation during the middle Pliocene was ~3 times higher than maximum accumulation rates during the past 1.5 million years. The indicated progressive deterioration of environmental and climatic conditions in the Siberian Arctic starting at ca. 3.3 Ma is consistent with the first occurrence of glacial periods and the finally complete establishment of glacial-interglacial cycles during the Quaternary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the evolution of Arctic polar climate from the protracted warmth of the middle Pliocene into the earliest glacial cycles in the Northern Hemisphere has been hindered by the lack of continuous, highly resolved Arctic time series. Evidence from Lake El'gygytgyn, NE Arctic Russia, shows that 3.6-3.4 million years ago, summer temperatures were ~8°C warmer than today when pCO2 was ~400 ppm. Multiproxy evidence suggests extreme warmth and polar amplification during the middle Pliocene, sudden stepped cooling events during the Pliocene-Pleistocene transition, and warmer than present Arctic summers until ~2.2 Ma, after the onset of Northern Hemispheric glaciation. Our data are consistent with sea-level records and other proxies indicating that Arctic cooling was insufficient to support large-scale ice sheets until the early Pleistocene.