57 resultados para 250604 Radiation and Matter
em Publishing Network for Geoscientific
Resumo:
Abstract has to submitted by author
Resumo:
Pack ice around Svalbard was sampled during the expedition ARK XIX/1 of RV "Polarstern" (March-April 2003) in order to determine environmental conditions, species composition and abundances of sea-ice algae and heterotrophic protists during late winter. As compared to other seasons, species diversity of algae (total 40 taxa) was not low, but abundances (5,000-448,000 cells/l) were lower by one to two orders of magnitude. Layers of high algal abundances were observed both at the bottom and in the ice interior. Inorganic nutrient concentrations (NO2, NO3, PO4, Si(OH)4) within the ice were mostly higher than during other seasons, and enriched compared to seawater by enrichment indices of 1.6-24.6 (corrected for losses through the desalination process). Thus, the survival of algae in Arctic pack ice was not limited by nutrients at the beginning of the productive season. Based on less-detailed physical data, light was considered as the most probable factor controlling the onset of the spring ice-algal bloom in the lower part of the ice, while low temperatures and salinities inhibit algal growth in the upper part of the ice at the end of the winter. Incorporation of ice algae probably took place during the entire freezing period. Possible overwintering strategies during the dark period, such as facultative heterotrophy, energy reserves, and resting spores are discussed.
Resumo:
Increasing atmospheric CO2 concentration is responsible for progressive ocean acidification, ocean warming as well as decreased thickness of upper mixing layer (UML), thus exposing phytoplankton cells not only to lower pH and higher temperatures but also to higher levels of solar UV radiation. In order to evaluate the combined effects of ocean acidification, UV radiation and temperature, we used the diatom Phaeodactylum tricornutum as a model organism and examined its physiological performance after grown under two CO2 concentrations (390 and 1000 µatm) for more than 20 generations. Compared to the ambient CO2 level (390 µatm), growth at the elevated CO2 concentration increased non-photochemical quenching (NPQ) of cells and partially counteracted the harm to PS II (photosystem II) caused by UV-A and UV-B. Such an effect was less pronounced under increased temperature levels. The ratio of repair to UV-B induced damage decreased with increased NPQ, reflecting induction of NPQ when repair dropped behind the damage, and it was higher under the ocean acidification condition, showing that the increased pCO2 and lowered pH counteracted UV-B induced harm. As for photosynthetic carbon fixation rate which increased with increasing temperature from 15 to 25 °C, the elevated CO2 and temperature levels synergistically interacted to reduce the inhibition caused by UV-B and thus increase the carbon fixation.
Resumo:
Increases in ultraviolet radiation (UVR) and CO2 affect phytoplankton growth and mortality in a variety of different ways. However, in situ responses of natural phytoplankton communities to climate change, as well as its effects on phytoplankton annual cycles, are still largely unknown. Although temperature and UVR have been increasing in temperate latitudes during winter, this season is still particularly neglected in climate change studies, being considered a non-active season regarding phytoplankton growth and production. Additionally, coastal lagoons are highly productive ecosystems and very vulnerable to climate change. This study aims, therefore, to evaluate the short-term effects of increased UVR and CO2 on the composition and growth of winter phytoplankton assemblages in a temperate coastal lagoon. During winter 2012, microcosm experiments were used to evaluate the isolated and combined effects of UVR and CO2, under ambient and high CO2 treatments, exposed to ambient UV levels and photosynthetically active radiation (PAR), or to PAR only. Phytoplankton composition, abundance, biomass and photosynthetic parameters were evaluated during the experiments. Significant changes were observed in the growth of specific phytoplankton groups, leading to changes in community composition. The cyanobacterium Synechococcus was dominant at the beginning of the experiment, but it was negatively affected by UVR and CO2. Diatoms clearly benefited from high CO2 and UVR, particularly Thalassiosira. Despite the changes observed in specific phytoplankton groups, growth and production of the whole phytoplankton community did not show significant responses to UVR and/or CO2.