597 resultados para 204-1244F

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sediments at the southern summit of Hydrate Ridge display two distinct modes of gas hydrate occurrence. The dominant mode is associated with active venting of gas exsolved from the accretionary prism and leads to high concentrations (15%-40% of pore space) of gas hydrate in seafloor or near-surface sediments at and around the topographic summit of southern Hydrate Ridge. These near-surface gas hydrates are mainly composed of previously buried microbial methane but also contain a significant (10%-15%) component of thermogenic hydrocarbons and are overprinted with microbial methane currently being generated in shallow sediments. Focused migration pathways with high gas saturation (>65%) abutting the base of gas hydrate stability create phase equilibrium conditions that permit the flow of a gas phase through the gas hydrate stability zone. Gas seepage at the summit supports rapid growth of gas hydrates and vigorous anaerobic methane oxidation. The other mode of gas hydrate occurs in slope basins and on the saddle north of the southern summit and consists of lower average concentrations (0.5%-5%) at greater depths (30-200 meters below seafloor [mbsf]) resulting from the buildup of in situ-generated dissolved microbial methane that reaches saturation levels with respect to gas hydrate stability at 30-50 mbsf. Net rates of sulfate reduction in the slope basin and ridge saddle sites estimated from curve fitting of concentration gradients are 2-4 mmol/m**3/yr, and integrated net rates are 20-50 mmol/m**2/yr. Modeled microbial methane production rates are initially 1.5 mmol/m**3/yr in sediments just beneath the sulfate reduction zone but rapidly decrease to rates of <0.1 mmol/m**3/yr at depths >100 mbsf. Integrated net rates of methane production in sediments away from the southern summit of Hydrate Ridge are 25-80 mmol/m**2/yr. Anaerobic methane oxidation is minor or absent in cored sediments away from the summit of southern Hydrate Ridge. Ethane-enriched Structure I gas hydrate solids are buried more rapidly than ethane-depleted dissolved gas in the pore water because of advection from compaction. With subsidence beneath the gas hydrate stability zone, the ethane (mainly of low-temperature thermogenic origin) is released back to the dissolved gas-free gas phases and produces a discontinuous decrease in the C1/C2 vs. depth trend. These ethane fractionation effects may be useful to recognize and estimate levels of gas hydrate occurrence in marine sediments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report dissolved sulfide sulfur concentrations and the sulfur isotopic composition of dissolved sulfate and sulfide in pore waters from sediments collected during Ocean Drilling Program Leg 204. Porewater sulfate is depleted rapidly as the depth to the sulfate/methane interface (SMI) occurs between 4.5 and 11 meters below seafloor at flank and basin locations. Dissolved sulfide concentration reaches values as high as 11.3 mM in Hole 1251E. Otherwise, peak sulfide concentrations lie between 3.2 and 6.1 mM and occur immediately above the SMI. The sulfur isotopic composition of interstitial sulfate generally becomes enriched in 34S with increasing sediment depth. Peak d34S-SO4 values occur just above the SMI and reach up to 53.1 per mil Vienna Canyon Diablo Troilite (VCDT) in Hole 1247B. d34S-Sigma HS values generally parallel the trend of d34S-SO4 values but are more depleted in 34S relative to sulfate, with values from -12.7 per mil to 19.3 per mil VCDT. Curvilinear sulfate profiles and carbon isotopic composition of total dissolved carbon dioxide at flank and basin sites strongly suggest that sulfate depletion is controlled by oxidation of sedimentary organic matter, despite the presence of methane gas hydrates in underlying sediments. Preliminary data from sulfur species are consistent with this interpretation for Leg 204 sediments at sites not located on or near the crest of Hydrate Ridge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The membrane lipids diglycosyl-glycerol dibiphytanyl glycerol tetraethers (2G-GDGTs) in marine subsurface sediments are believed to originate from uncultivated benthic archaea, yet the production of 2G-GDGTs from subseafloor samples has not been demonstrated in vitro. In order to validate sedimentary biosynthesis of 2G-GDGTs, we performed a stable carbon isotope probing experiment on a subseafloor sample with six different 13C-labelled substrates (bicarbonate, methane, acetate, leucine, glucose and Spirulina platensis biomass). After 468 days of anoxic incubation, only glucose and S. platensis resulted in label uptake in lipid moieties of 2G-GDGTs, indicating incorporation of carbon from these organic substrates. The hydrophobic moieties of 2G-GDGTs showed minimal label incorporation, with up to 4 per mil 13C enrichment detected in crenarchaeol-derived tricyclic biphytane from the S. platensis-supplemented slurries. The 2G-GDGT-derived glucose or glycerol moieties also showed 13C incorporation (Dd13C = 18 - 38 per mil) in the incubations with glucose or S. platensis, consistent with a lipid salvage mechanism utilized by marine benthic archaea to produce new 2G-GDGTs. The production rates were nevertheless rather slow, even when labile organic matter was supplied. The 2G-GDGT turnover times of 1700 - 20 500 years were much longer than those estimated for subseafloor microbial communities, implying that sedimentary 2G-GDGTs as biomarkers of benthic archaea are cumulative records of past and present generations.