562 resultados para 201-1231
em Publishing Network for Geoscientific
Resumo:
High-resolution analyses of the oxygen isotope ratio (18O/16O) of dissolved sulfate in pore waters have been made to depths of >400 meters below seafloor (mbsf) at open-ocean and upwelling sites in the eastern equatorial Pacific Ocean. d18O values of dissolved sulfate (d18O-SO4) at the organic-poor open-ocean Site 1231 gave compositions close to modern seawater (+9.5 per mil vs. Vienna-standard mean ocean water, providing no chemical or isotopic evidence for microbial sulfate reduction (MSR). In contrast, the maximum d18O values at Sites 1225 and 1226, which contain higher organic matter contents, are +20 per mil and +28 per mil, respectively. Depth-correlative trends of increasing d18O-SO4, alkalinity, and ammonium and the presence of sulfide indicate significant oxidation of sedimentary organic matter by sulfate-reducing microbial populations at these sites. Although sulfate concentration profiles at Sites 1225 and 1231 both show similarly flat trends without significant net MSR, d18O-SO4 values at Site 1225 reveal the presence of significant microbial sulfur-cycling activity, which contrasts to Site 1231. This activity may include contributions from several processes, including enzyme-catalyzed equilibration between oxygen in sulfate and water superimposed upon bacterial sulfate reduction, which would tend to shift d18O-SO4 toward higher values than MSR alone, and sulfide oxidation, possibly coupled to reduction of Fe and Mn oxides and/or bacterial disproportionation of sulfur intermediates. Large isotope enrichment factors observed at Sites 1225 and 1226 (epsilon values between 42 per mil and 79 per mil) likely reflect concurrent processes of kinetic isotope fractionation, equilibrium fractionation between sulfate and water, and sulfide oxidation at low rates of sulfate reduction. The oxygen isotope ratio of dissolved pore water sulfate is a powerful tool for tracing microbial activity and sulfur cycling by the deep biosphere of deep-sea sediments.
Resumo:
Fifty-seven interstitial water samples from six sites (Ocean Drilling Program Sites 1225-1229 and 1231) in the eastern equatorial Pacific Ocean and the Peru margin were analyzed for the stable sulfur isotopic composition (34S/32S) of dissolved sulfate along with major and minor ions. With the exception of Site 1231, sulfate from the interstitial fluids (d34S values as much as 89 per mil vs. the SF6-based Vienna-Canyon Diablo troilite standard) is found at depth to be enriched in 34S with respect to modern seawater sulfate (d34S = ~21 per mil), indicating that microbial sulfate reduction (MSR) took place to different extents at all investigated sites. Deeper sediments at Sites 1228 and 1229 are additionally influenced by diffusion of a sulfate-rich brine that has already undergone sulfate reduction. The intensity of MSR depends on the availability of substrate (organic matter), sedimentation conditions, and the active bacterial community structure. Formation of isotopically heavy diagenetic barite at the sulfate-methane transition zone is expected at Sites 1227 (one front), 1229 (two fronts), and probably Site 1228. At Site 1231, the constant sulfur isotopic composition of sulfate and concentrations of minor pore water ions indicate that suboxic (essentially iron and manganese oxide based) diagenesis dominates and no net MSR occurs.
Resumo:
The membrane lipids diglycosyl-glycerol dibiphytanyl glycerol tetraethers (2G-GDGTs) in marine subsurface sediments are believed to originate from uncultivated benthic archaea, yet the production of 2G-GDGTs from subseafloor samples has not been demonstrated in vitro. In order to validate sedimentary biosynthesis of 2G-GDGTs, we performed a stable carbon isotope probing experiment on a subseafloor sample with six different 13C-labelled substrates (bicarbonate, methane, acetate, leucine, glucose and Spirulina platensis biomass). After 468 days of anoxic incubation, only glucose and S. platensis resulted in label uptake in lipid moieties of 2G-GDGTs, indicating incorporation of carbon from these organic substrates. The hydrophobic moieties of 2G-GDGTs showed minimal label incorporation, with up to 4 per mil 13C enrichment detected in crenarchaeol-derived tricyclic biphytane from the S. platensis-supplemented slurries. The 2G-GDGT-derived glucose or glycerol moieties also showed 13C incorporation (Dd13C = 18 - 38 per mil) in the incubations with glucose or S. platensis, consistent with a lipid salvage mechanism utilized by marine benthic archaea to produce new 2G-GDGTs. The production rates were nevertheless rather slow, even when labile organic matter was supplied. The 2G-GDGT turnover times of 1700 - 20 500 years were much longer than those estimated for subseafloor microbial communities, implying that sedimentary 2G-GDGTs as biomarkers of benthic archaea are cumulative records of past and present generations.