38 resultados para 20-196
em Publishing Network for Geoscientific
Resumo:
Seventy four samples of DSDP recovered cherts of Jurassic to Miocene age from varying locations, and 27 samples of on-land exposed cherts were analyzed for the isotopic composition of their oxygen and hydrogen. These studies were accompanied by mineralogical analyses and some isotopic analyses of the coexisting carbonates. d18O of chert ranges between 27 and 39%. relative to SMOW, d18O of porcellanite - between 30 and 42%. The consistent enrichment of opal-CT in porcellanites in 18O with respect to coexisting microcrystalline quartz in chert is probably a reflection of a different temperature (depth) of diagenesis of the two phases. d18O of deep sea cherts generally decrease with increasing age, indicating an overall cpoling of the ocean bottom during the last 150 m.y. A comparison of this trend with that recorded by benthonic foraminifera (Douglas and Savin, 1975; http://www.deepseadrilling.org/32/volume/dsdp32_15.pdf) indicates the possibility of d18O in deep sea cherts not being frozen in until several tens of millions of years after deposition. Cherts of any Age show a spread of d18O values, increasing diagenesis being reflected in a lowering of d18O. Drusy quartz has the lowest d18O values. On-land exposed cherts are consistently depleted in 18O in comparison to their deep sea time equivalent cherts. Water extracted from deep sea cherts ranges between 0.5 and 1.4 wt %. dD of this water ranges between -78 and -95%. and is not a function of d18O of the cherts (or the temperature of their formation).
Resumo:
Cretaceous, Tertiary, and Quaternary sediments from Deep Sea Drilling Project Sites 164 and 196 (13°12' N, 161°31' W and 30°07' N, 148°34' E, respectively) were analyzed for major chemical elements and mineralogy. Sediments from these sites contain large proportions of authigenic minerals: mainly palygorskite, clinoptilolite and chert in the Cretaceous, and montmorillonite, phillipsite and chert in the Tertiary. The montmorillonite-phillipsite assemblage is thought to be derived from volcanic ash or glass, and the palygorskite-clinoptilolite assemblage is thought to be derived by reaction of biogenic silica with volcanic ash or glass or with montmorillonite and phillipsite. Both assemblages have generally moderate Ti/Al ratios, ranging from 0.026 to 0.047, so most of the palygorskite, clinoptilolite, montmorillonite and phillipsite could not be derived in situ from alteration of basaltic material. Plagioclase compositions suggest that the volcanic precursors were silicic or intermediate, but it is also possible that the sediments have been extensively fractionated by redistribution from nearby seamounts. Available data on other Late Cretaceous sediments in the Pacific were analyzed. Clinoptilolite and chert are present nearly everywhere where palygorskite is abundant; phillipsite is rare where palygorskite is abundant. It is suggested that increased water temperatures during the Cretaceous increased reaction rates and determined the alteration products.