369 resultados para 194-1193

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study is based on rock mechanical tests of samples from platform carbonate strata to document their petrophysical properties and determine their potential for porosity loss by mechanical compaction. Sixteen core-plug samples, including eleven limestones and five dolostones, from Miocene carbonate platforms on the Marion Plateau, offshore northeast Australia, were tested at vertical effective stress, sigma1', of 0-70 MPa, as lateral strain was kept equal to zero. The samples were deposited as bioclastic facies in platform-top settings having paleo-water depths of <10-90 m. They were variably cemented with low-Mg calcite and five of the samples were dolomitized before burial to present depths of 39-635 m below sea floor with porosities of 8-46%. Ten samples tested under dry conditions had up to 0.22% strain at sigma1' = 50 MPa, whereas six samples tested saturated with brine, under drained conditions, had up to 0.33% strain. The yield strength was reached in five of the plugs. The measured strains show an overall positive correlation with porosity. Vp ranges from 3640 to 5660 m/s and Vs from 1840 to 3530 m/s. Poisson coefficient is 0.20-0.33 and Young's modulus at 30 MPa ranged between 5 and 40 GPa. Water saturated samples had lower shear moduli and slightly higher P- to S-wave velocity ratios. Creep at constant stress was observed only in samples affected by pore collapse, indicating propagation of microcracks. Although deposited as loose carbonate sand and mud, the studied carbonates acquired reef-like petrophysical properties by early calcite and dolomite cementation. The small strains observed experimentally at 50 MPa indicate that little mechanical compaction would occur at deeper burial. However, as these rocks are unlikely to preserve their present high porosities to 4-5 km depth, further porosity loss would proceed mainly by chemical compaction and cementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During Leg 194, a series of eight sites was drilled through Oligocene-Holocene mixed carbonate and siliciclastic sediments on the Marion Plateau, northeast Australia. The major objective was to constrain the magnitude and timing of sea level changes in the Miocene. Site 1193, located on the Marion Plateau in 348 m of water ~80 km from the south central Great Barrier Reef margin, is probably the most important site for constraining the major middle to late Miocene sea level drop and reconstructing the evolution history of the Marion Plateau during the Miocene (Isern, Anselmetti, Blum, et al., 2002, doi:10.2973/odp.proc.ir.194.2002). However, there is no biostratigraphic or other chronological data for the critical interval between 36 and 211 meters below seafloor (mbsf) (virtually the entire late and middle Miocene) due to poor core recovery and a virtual absence of planktonic microfossils in the core catcher samples examined aboard the ship (Isern, Anselmetti, Blum, et al., 2002, doi:10.2973/odp.proc.ir.194.2002). The main purpose of this report is to refine the shipboard nannofossil biostratigraphy through examination of new samples and more detailed examination of those samples reported on board the ship. This results in a refinement for most of the nannofossil datums and provides some useful age information to fill the critical data gap for the middle Miocene. Previous Neogene nannofossil biostratigraphic studies of the Marion Plateau and Queensland Plateau include Gartner et al. (1993, doi:10.2973/odp.proc.sr.133.213.1993) and Wei and Gartner (1993, doi:10.2973/odp.proc.sr.133.216.1993).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report analyses of porosity and permeability of core samples from Site 1193 in the Northern Marion Platform, Sites 1196 and 1199 in the Southern Marion Platform, and Sites 1194, 1195, 1197, and 1198 from the slopes of these platforms. The samples include 415 horizontal 1-in plugs, 290 vertical 1-in plugs, and 23 whole-core pieces. Porosity and permeability analyses were possible for most, but not all, samples. Grain density measurements were also obtained for the horizontal plugs. Representative photomicrographs are provided of thin sections from 139 of the horizontal plugs and the 23 whole-core pieces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Significant synchronous shifts in the chemistry, mineralogy, grain sizes and color of the sediments at 6 m below sea floor (mbsf) at ODP Site 1195 on the Marion Plateau (NE Australia) are interpreted to reflect a major regional paleoceanographic change: the initiation of the southern province of the Great Barrier Reef (GBR). The onset of this massive carbonate production centre nearby resulted primarily in increased deposition of carbonate-rich sediments of neritic origin. Both sedimentation rate and terrigenous input record a coincident decline attributed to inshore trapping of materials behind the reefs. Our best estimate places the development of reef framework in the southern part of the GBR between 560 and 670 kyr B.P., based on an age model combining magnetostratigraphic and biostratigraphic data. The proposed estimation agrees with previous studies reporting an age between 500 and 930 kyr B.P., constraining more tightly their results. However, it does not support research placing the birth of the GBR in Marine Isotope Stage (MIS) 11 (~400 kyr), nor the theory of a worldwide modern barrier reef development at that time.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Southern Marion Plateau (SMP) represents a vertical stacking of Miocene carbonate platform deposits. Two sites (1196 and 1199) were drilled on top of this plateau, penetrating a 663-m carbonate succession of bioclastic and reefal sedimentary bodies. The study focuses on the least dolomitized 410-m-thick upper part of the succession, which is middle to late Miocene in age. Sedimentological and paleontological studies were conducted at both sites in order to propose a paleoenvironmental model and its evolution through the Miocene age. Six main microfacies of possible environmental significance were defined using statistical multivariate analyses, based on the recognition and point counting of 24 biogenic components. Depositional environment reconstructions are proposed as well as the biosedimentary and the environmental evolution regarding seismic architectures, stratigraphy, biosedimentology, and microfacies analysis. The SMP platform mainly results from a vertical stacking of lens-shaped bodies in homoclinal to distally steepened ramp settings.